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ABSTRACT

In natual languageprocessingambiguty res-

olution is a centralissue,andcanbe regarded
as a preference assignmenproblem. In this

paper, a GeneralizedProbablistic Semanit

Model (GPSM) is propcsed for preference
compuation An effective semantic tagging

procedue is proposedfor taggng semanit

features. A semantic score function is de-

rived basedon a score function, which inte-

grateslexical, syntactic and semanticprefer-

enceunder a uniform formulation. The se-

mantic score measureshows subsantial im-

provementin structuraldisamlguaion over

a syntaxbasedapproach.

1. Introduction

In a large natual language processing system,
suchasa machne translaion systen (MTS), am-
biguity resolutian is a critical prodem. Various
rule-basedand probahilistic appracheshadbeen
propcsed to resole various kinds of ambiguity
problams on a cag-by-asebasis.

In rule-basedsystens, alarge numbe of rules
are usedto specify linguistic constaints for re-
solving ambigtity. Any parsethatviolates the se-
mantic constaints is regaded as ungrmmmatial
andrejected. Unforturately, becaiseevely “rule”
tendsto have exception and uncertainty, and ill-
formedness hassignificant contiibution to the er-
ror rate of a large prectical system,such “hard
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rejection” apprachedail to dealwith thesesitua-
tions. A bette way is to find all possilhe interpre-
tatiors and place emphass on preference, rather
thanwell-formedness (e.g.,[Wilks 83].) However,
most of the known appro&hesfor giving prefer-
ene depenl heavilyon heuisticssuchascounting
the numbe of constrant satisfations. Therefore
most suchpreferene meaurescan not be objec-
tively justified Moreover, it is hard and costly
to acquire, verify andmaintain the consistacy of
the large fine-grainal rule baseby hand.

Probalilistic appoache gredly relieve the
knowledye acqusition prodem beausethey are
usudly trainable, consistent andeay to meetcer-
tain optimum criteria. They can also provide
more objedive preferen@ meauresfor “soft re-
jection.” Hence they areattrective for alarge sys-
tem. The current probailistic approgheshavea
wide coverageincluding lexical analyss [DeRose
88, Church 88], syntadic analysis [Garside 87,
Fujis&ki 89, Su 88, 89, 91b], resticted sematic
andysis[Church 89, Liu 89,90], andexpeimentd
trarslation systens [Brown 90]. However,there
is still no integrated appioach for modeling the
joint effects of lexical, syntactic and semantic in-
formation on preference evduation.

A genealized probailistic sematic modd
(GPSM) will be propo®d in this pape to over-
cone the above problems. In particdar, an in-
tegratedformuldtion for lexicd, syntadic andse-
martic knowledge will be usedto derive the se-
mantic score for sematic prefeene evaludion.
Application of the modd to strudural disam-



biguaion is investicated. Preliminary expeiments
showabou 10%—14%mprovemen of the seman-

tic score measire overa modd thatusessyntadic

information only.

2. Preference Assignment Using
Score Function

In geneal, a partiaular semantic interpretation of
a sentege canbe charaterized by a setof lexical
categories (or partsof speet), a syntactic struc-
ture, andthe semantic annotations asso@tedwith
it. Among the various interpretationsof a sen-
tence the bestchoiceshouldbe the most probable
semaitic interpretation for the given input words.
In otherwords, the interpretationthat maximizes
the following score function [Su 88, 89, 91b] or
analysis score [Chen 91] is preferred

Score (Sem;, Syn;, Lexy, Words) Q)
= P(Sem,;, Syn;. Lexy|Words)
= P (Sem;|Syn;, Lexy, Words)
x P (Synj|Lexy, Words)

x P (Lexy|Words)

(semantic score)
(syntactic score)

(lexical score)

where (Lex,, Synj, Sem) refers to the kth set of
lexicd categories the jth syntactic strudure and
the ith set of sematic annotdions for the input
Words. The three compament functions are re-
ferred to as semantic score (Sem), Syntactic score
(Syn) and lexical score (Se), respetively. The
global prefaence meaure will be referredto as
compositional score or simply asscore. In partic-
ular, the semantic score accaintsfor the sematic
prefeene on a given setof lexical cateyoriesand
a particdar syntactic structue for the sentace.
Various formulation for the lexical scoe andsyn-
tactic scoe had beenstudiedextensiely in our
previaus works [Su 88, 89, 91b, Chiang92] and
other literatures. Hence,we will concentrate on
the formulation for semantic score.

3. Semantic Tagging

Canonical Form of Semantic
Representation

Given the formulation in Eqn. (1), first we will
show how to extract the abstrat objects (Sem,
Syn;, Lexc) from a sematic representéion. In
geneal, a partiaular interpretation of a sentece
can be representedby an annotated syntax tree
(AST), which is a synta tree annotded with fea-
ture structures in the tree nodes. Figure 1 shows
an exanple of AST. The annotated versian of a
nodeA is denotel as A = A[f4] in the figure
wherefa is the feaure structue associted with
nodeA. Becawsean AST presevesboth syntattic
and semantt information, it can be conwertedto
othe dee structue representatims easily. There-
fore, withoutloseof geneality, the AST repreen-
tationwill beusedasthe canmical form of seman-
tic representatian for prefererce evduation. The
techiquesusedhere of course,canbe applied to
othe deepstructue representatios aswell.

Alfal

t7 Le={A }
L={B, C }
Blfz] Clfc] Le={B, F,G}
/\t3 /\te Ls=(B, F.c,
DIfpl  E[fe] Fifel  Glfgl L,={B, C3, Cq}
L3:{D! E , C3, C4}
ty L |t s L,={D, c,,cs,Ca}
Cl Co 03 C4 Ll:{C11C21C31Q|-}

(wl) w2) (w3) (w4)

Figure 1. AnnotatedSyntax Tree
(AST) and PhraseLevels (PL).

The hierachical AST can be representedby
a set of phrase levels, suchasL; throughLg in
Figure 1. Formdly, a phrase level (PL) is a set
of symlmls correspondingto a sentential form of
the sentege. The phra® levelsin Figure 1 are
derived from a sequ@ce of rightmost derivations,
which is comnonly usedin anLR parsirg mech-
anism For exanple, Ls andL4 correspondto the
rightmost derivation B F ¢4 = B ¢ cs. Note
thatthefirst phrasdevd L1 consigs of all lexica
catgyoriesc ... ¢, of the terminal words (w; ...
Wn). A phraselevd with eachsymbol annotded
with its feaure strudure is called an annotated
phrase level (APL). The i-th APL is denotel as
Ti. Forexampe, Ls in Figure1 hasan annotaed
phreselevd Ts = {B|[fs . F [fF],ca|f., } asSits
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countepart, where f., is the atomc featue of the
lexicd category c4, which comesfrom the lexical
item of the 4th word ws. With the abore nota-
tions, the scorefunction can be re-formulaed as
follows:

Score (Sem;, Syn;, Lexy, Words) (2)

=P((TT, LT, T uw?)
P(TTLY, o wl)
P (I er ul)
P

olwy)

(semantic score)

(syntactic score)

X X

(lexical score)

where c;" (a short form for {c; ... cy}) is the
kth set of lexical categories (Lex), Li™ ({L1 ...
Lm}) is thejth syntacticstructue (Syn;), andT ;™
({Ty ... Ty} istheith setof sematic annotaions
(Semy) for the input wordswi" ({wy ... wp}). A
good enmding schene for the T;’s will allow us
to take semantic information into acount with-
out using redurdantinformation. Hence,we will
showhow to annota¢ a syntaxtreesothatvarous
interpretatiors can be charaterized differently.

Semantic Tagging

A popula linguistic approachto anrotate a tree
is to use a unification-tasedmedanism. How-
ever, manyinformation irrelevantto disanbigua-
tion might be included. An effective encal-
ing schene shodd be simple yet can preserve
most discrimination information for disanbigua-
tion. Such an encodng schene can be ac-
compished by asseiating each phrag struc-
turerule A — X{X5...Xn with a head list
(Xi, Xi, ... Xi,, ). The headlist is formed by
arranging the children nodes (X1, Xy, ..., Xas)
in descading orde of importanceto the compo-
sitional sematics of their mothernodeA. For this
reasm, X;,, X;, and X;, arecalledthe primary,
secomlary and the j-th headsof A, respetvely.
Thecompsitionalsemantt featuesof themother
nodeA canberepresentd asanordeaedlist of the
featue structues of its children, wherethe order
is the sameasin the hed list. For examge, for
S — NP VP, we havea headlist (VP, NP), be-
causeVP is the (primaty) headof the sentece.
When composing the compositiond semantics of
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S, the featues of VP and NP will be placel in
the first and secoml slots of the feature strudure
of S, respectivdy.

Because not all children and all featues in
a featue structue are equally significant for dis-
amhguation, it is not redly necesaryto anndate
a nodewith the featue structures of all its chil-
dren. Insteal, only the most important N chil-
dren of a nodeis needd in chaacteizing the
node andonly the mostdiscriminative featue of
a child is needd to be passd to its mothe node
In otherwords, an N-dimensonal featue vector,
called a semanticN-tuple could be usedto char-
acteize a nodewithout losing much information
for disamliguation. The first featue in the se-
martic N-tuple comesfrom the primary head,and
is thus called the headfeatue of the sematic N-
tuple The other featues come from the other
children in the orde of the heal list. (Compae
thesenotionswith thelinguistic senseof headand
headfeatuwe) An anndated node can thus be
appoximated as A = A(fi, fa, -, fn), Where
f; = HeadFeature (X_h) is the (primary) head
featue of its j-th head(i.e., X;,) in the headlist.
Non-head featuesof a child node X;, will notbe
percolatedup to its mothernode. The headfea-
ture of A itself, in this caseis f;. For aterminal
node the headfeatue will bethe semantidag of
the correspondiry lexical item; other featuresin
the N-tuple will be taggedas ¢ (NULL).

Figure 2 showstwo possibleannotded syn-
tax trees for the sentee “... saw the boy in
the park.” For instarce, the “loc(ation)” feaure
of “park” is permlated to its mother NP node
as the heal featue; it then servesas the sec-
onday heal featue of its grandnother node PP,
beausethe NP node is the secadary head of
PP. Similarly, the VP nodein the left treeis an-
notaed as VP(sta,aim) accoding to its primary
heal saw(stap) andsecondry headNP(anim,in)
The VP(sta,in) nodein theright treeis taggel dif-
ferently, which reflects different attachmentpref-
erence of the prepo#ional phrase

By this simple mechanism,the majar chara-
teridics of the children, namdy the headfeatues,
can be percolatedto higher syntactic levels and



sta: stative verb
def: definite article
loc: location
anim: animate

a(a-hpa-hy) ;F:&gta,ani m) B(B—h,B—hy a(a-hya-hy) VP(stain B(B-,B-hy

saw(sta,p) ﬂmim,i n)m

‘\ saw(stap)

NP(anim,def) PP (in,loc)

P N ZAN

the(def,@) boy(anim,g) in(in,d) NP(loc,def)

P

the(def,p) park(loc,®)

NP(anim,def) PP(in,loc)

the(def,@) boy(anim,@) in(in,d) NP(loc,def)

the(def,p) park(loc,®)

Figure 2. Ambiguous PP attachmentpatternsannotatedwith semantic2—tuples.

their corrdation anddepenéncycanbetaken into
accaunt in preferene evalwation evenif they are
far apart In this way, differentinterpretatianswill
be taggel differently. The preferen@ on a partic-
ular interpretationcanthusbe evaluatedfrom the
distribuion of the annotaed syntaxtrees. Based
on the abowe semantic taggng schene, a seman-
tic score will be propcsedto evalwate the seman-
tic preferen@ on various interpretationsfor a sen-
tence Its perfamane improvemert over synta-
tic scoe [Su 88, 89, 91b] will be invesigated.
Conseguently,abrief reviewof the syntactic score
evaluation methal is given before going into de-
tails of the sematic scoremodel. (Seethe cited
references for details)

4. Syntactic Score

According to Egn. (2), the syntadic score canbe
formulated as follows [Su 88, 89, 91b]:

Ssyn = P (Synj|Lexy, wy) = P (LT |}, wl) 3

m

= H P(L|LTY o))
=2

~[[P (LI
~ [[P(LilTizy)

= HP({QI: A B} e, X9, Xo, - X, 1))
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where a;, §; are the left context and right context
under which the derivation A4, 5 Xi1X9... XM
occurs. (Assume that 7; = {ag, A, 5} and
Ly =A{a, X1,-+, Xum, 5;}.) If L left context
symbols in o andR right context symbolsin
are consuled to evaluate the syntactc score it is
saidto operae in L Rr mode of operdion. When
thecontet is ignored, suchanLoRy modeof oper-
ationredu@sto a stochasticcontext-free gramnmar.

To avoid the normalization problem [Su 91b]
arisen from different numberof transition prob-
abilities for different syntaxtrees an alterndive
formulation of the syntactic scoe is to evaluate
the transition probalilities betwea corfiguration
changesof the parser For instane, the config-
uration of an LR parse is defined by its stack
conentsandinput buffer. For the AST in Figure
1, the parser configuratiors after the read of c,
C2, C3, ¢4 and $ (end-d-sentarce) are equivdent
to L1, Lo, La, Ls andLsg, respetively. Therefore
the syntadic scorecan be appoximatel as [Su
89, 91b]:

S.syn ~ P(L8L7L2|Ll) (4)
~ P

([g‘[q) X P([5|[4) X P(l:4|[2) X P([g‘[q)

In this way, the numler of transtion probailities
in the syntadic scores of all AST's will be kept
the sameas the sentece lengh.



5. Semantic Score

Semantic score evduation is similar to syntadic
scoreevduation. From Eqgn. (2), we have the
following semantic modé for semantic score:

Ssem (Sem;, Syn;, Lexy, Words) (5)

TP o ud)

= HP (I‘1|rllilzl‘§n:c1lq:w;1)

Il
o 3

where A, = A/ (fi1. fia,-. fin) is the anno-
tated versicn of A, whose sematic N-tuple is
(fi1. fia.--- fin), and @, G; are the annotded
context symbds. Only T; is assunedto be sig-
nificart for the trarsition to T in the last equa-
tion, becaiseall required informationis assuned
to havebee percdatedto I'\.; through sematics
compgsition.

Ead termin Eqn. (5) canbe interpretedas
the probability thatA, is annotaed with the partic-
ular setof heal featues(f; 1. fi». . fin), given
that X; ... Xu areredu@dto A in the context of
a; and ;. Soit canbe interpretedinformély as
P(Ai (fir. iz, fin) | At = Xq- Xy,
in the context of @7, ;). It correspondgo the se-
mantic preferene assignd to the annotded node
A . Since(fi1. fi2. - fin) arethe heal featues
from various headsof the substraturesof A, each
term refleds the feature co-ocurrencepreferene
amongtheseheads.Furthemore, the heals could
be very far apart. This is differert from most
simple Markov modds, which candealwith local
constaintsonly. Hence sucha formulation well
chamacterzeslong distane dependencyamongthe
head, andprovidesa simplemectanismto incor-
poratethefeatue co-occurrenceprefeence among
them. Forthe semant N-tuple model,the seman-
tic scorecanthus be expressedas follows:

Seem (6)

R HP(AI (fir.fio fin) e Ay = Xq - Xpp, i)
=2
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where f|; are the semantictags from the chil-

dren of A. For exanple, we have terns

like P (VP (sta,anim)|a, VP —v NP, ) and
P (VP (sta,in) | a,VP —v NP PP, j), resgc-
tively, for the left andright treesin Figure2. The
anndations of the context are ignored in evalu-
ating Eqn. (6) dueto the assunption of seman-
tics compsitionalty. The opertion modewill be
called L Rr+An, WhereN is the dimenson of the
N-tuple, andthe subscipt L (or R) refers to the
size of the contest window. With an appopriate
N, the scorewill provide sufficient disclimination
power for genera disambigiation problemn with-

out resoting to full-blown sematic analysis.

6. Major Categories and
Semantic Features

As mentimed before, not all constituats are
equdly important for disanbiguation For in-
stane, headwords are usually more importart
than modifiess in detemining the composiional
semantic featuresof their mothe node. Ther is
also lots of redindany in a sentece. For in-
stane, “saw boy in park” is equdly recoqiz-
able as “saw the boy in the park.” Therefore
only a few catayories,including verbs, nouns, ad-
jectives, prepositions and adverbs and their pro-
jections (NP, VP, AP, PP, ADVP), are usedto
cary semaitic featuesfor disanbiguation These
catgyoriesareroughly equivalentto the major cat-
egories in linguistic theory[Sells 85] with the in-
clusion of adverbs asthe only difference.

The sematic featue of eachmajor category
is encodd with a set of semantic tags that well
descibes eachcateggory. A few rules of thumb
areusedto sele¢ the sematic tags. In particdar,
sematic feaures that can discriminate differert
linguistic behavia from different possibleseman-
tic N-tuples are preferred as the semant tags.
With theseheurstics in mind, the verbs, nouns
adjectives, adwerbs and prepositions are divided
into 22, 30, 14, 10 and 28 classs, respetively.
For exampe, the nounsaredividedinto “human,”
“plant,” “time,” “space,” andsoon. Theseseman-
tic classe come from a numbe of sourcs and



the semantic attribute hierachy of the ArchTran
MTS [Su 90, Chen91].

7. Test and Analysis

The semantic N-tuple modé is usedto test the
improvementof the semantic score over syntactic
score in strudure disambigiation. Eqn. (3) is
adoptel to evalwate the syntactic scoe in LRy
modeof operdion. The semantic scoke is derived
from Eqn. (6) in LoR+Ax mode,for N = 1, 2,
3, 4, whereN is the dimensiam of the sematic
N-tuple.

A total of 1000 sentenes (including 3 un-
ambiguousoneg are randanly seleded from 14
compuer manuds for training or testing They
are divided into 10 parts; ead part contans 100
senteces. In close tests, 9 pats are used both
as the training set and the testing set. In open
tests, the rotation estimation apprach [Devijver
82] is adoptel to estimatethe open test perfar-
mane. This mears to iteratively testone pait of
the senteceswhile using the remaning partsas
the training set. The overall performarce is then
estimded as the avaage perfomanceof the 10
iterations.

Thepefformarceis evaludaedin termsof Top-

N recognition rate (TNRR), which is definal as
the fraction of the testsenteweswhoseprefared
interpretation is succasfully ranked in the first
N canddates. Table 1 showsthe simuldion re-
sults of close tests. Table 2 showspartid results
for open tests (up to rank 5.) The recognition
ratesachieved by consicering syntactic score only
and semantic score only are shownin the tables.
(LoR1+A3 andL,R1+A,4 perfomancearethesame
asLoR;+A; in the preseh test envionment So
they arenot shownin thetables.) Sinceead sen-
tence has about 70-75 ambiguas construts on
the averaye, the task pergexity of the currentdis-
ambiguation task is high.
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Table 1. CloseTestof Semantt Score

Score Syntax Semantics Semantics
(L2R1) (L2R1+A1) | (L2R1+A2)
Rank | Count TNRR|| Count TNRR| Count TNRR
(%) (%) (%)
1 781 87.07( 872 97.21| 866 96.54
2 101 98.33( 20 99.44| 24 99.22
3 9 9933| 5 100.000 4  99.67
4 99.89 - -
5 - - 2 99.89
13 - - 1 100.00
18 1 100.0d
DataBase:900 Sentences

TestSet: 897 Sentences

Total Numberof AmbiguousTrees= 63233

(*) TNRR: Top-N RecognitionRate

Table 2. OpenTestof Semantt Score

Score Syntax Semantics Semantics
(L2R1) (L2R1+A1) | (L2R1+A2)

Rank | Count TNRR|| Count TNRR| Count TNRR
(%) (%) (%)

1 430 43.13|| 569 57.07| 578 57.97

2 232 66.40| 163 73.42| 167 74.72

3 94 75.83|| 90 82.45| 75 82.25

4 80 83.85| 50 87.46| 49 87.16

5 35 87.36| 22 89.67| 28 89.97

DataBase:900 Sentenceg+)
TestSet: 997 Sentenceg++)

Total Numberof AmbiguousTrees= 75339

(+) DataBase effective databasesizefor rotation
estimaton

(++) TestSet: all testsentenceparticipatingthe

rotation estimaion test




The close test Top-1 performane (Table 1)
for syntactic score (87%) is quite satisfatory.
When semantic scoreis taken into accant, sub-
stantid improvementin recognition rate can be
obseved further (97%). This showsthat the se-
mantic model does provide an effective mectha-
nism for disambigiation. The reagnition rates
in opentests,however,arelesssatisfatory under
the presat test environment. The opentest per-
formance can be attribuied to the small databae
size and the estimation errar of the paraneters
thusintroduced. Becatse the training databaeis
smallwith respectto the compexity of the model,
a significant fraction of the probaility entriesin
thetestirg setcannot befound in thetraining set.
As a resut, the paranetersare somewh# “over-
tuned” to the training datdase,and their values
are less favorable for opentests. Neverheless,
in both close testsand open tests, the sematic
scoremodel showssubstatial improvement over
syntadic score(and hencestoctastic conext-free
grammar). The improvemern is abou 10% for
closetestsand 14% for opentests.

In gereral, by usinga largerdatdbaseandbet-
ter robug estimaion techniques[Su 91a, Chiang
92], the baselire modd canbe improved further.
As we had obsened from other expaiments for
spoken languaye processing[Su 91a] lexical tag-
ging, and strucure disanbiguatian [Chiang 92],
the perfaomane unde spase data condition can
be improvedsignificantly if robustadapive leam-
ing tecmiquesareusedto adjusttheinitial paran-
eters Interestedreades are referred to [Su 91a,
Chiang92] for more details.

8. Concluding Remarks

In this pape, a generalized probabilistic seman-
tic model (GPSM)is propo®d to assignsemantic
preference to ambiguousinterpretations. The se-
mantic model for measuing prefeenceis based
on a scoke function, which takes lexicd, syntadic
and sematic information into consderatian and
optimizesthejoint preferene. A simpleyet effec-
tive encodng scheme andsematic taggirg proce-
dureis proposedto chalcteriz various interpreta-
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tionsin anN dimensimal featue spa@. With this
enmding schene, one can enmde the interpre-
tations with disciminative featues, and take the
fedure co-ocurrence preferene amorg various
condituentsinto account. Unlike simple Markov
modsds, long distan@ depemency can be man-
agal easily in the proposé modd. Preliminary
testsshowsubstantil improvemen of the seman-
tic score measire over syntactic score measire.
Hence it showsthe possibilty to overcome the
ambguity resolution problem without resoting to
full-blown semanticandysis.

With sucha simple, objective and trainable
formulation, it is possilbe to take high level se-
martic knowledge into corsideraton in statistic
seng. It also provides a systematic way to con-
strua a disambguationmodulefor large pradical
madine transldion systemswithout much human
intervention; the heavyburden for the linguiststo
write fine-grained“rules” canthusbe relieved.
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