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1. Introduction

In a machinetranslationsystem,the numberof possibleanalysesassociatedwith a given
sentenceis usually very large due to the ambiguousnatureof natural languages.But, it is
desirablethat only thebestoneor two analysesbe translatedandpassedto thepost-editorso
as to reducethe requiredefforts of post-editing. In addition,processingtime for a sentence
is usually limited whenprocessinga large numberof sentencesin batchmode. Therefore,it
is important,in a practical machinetranslationsystem,to obtain the bestsyntaxtree which
hasthe bestannotatedsemanticinterpretation within a reasonablyshort time. This is only
possiblewith an intelligent parsingalgorithm which can truncateundesirableanalysesas
early aspossibleandavoid wastingtime in parsingthoseambiguousconstructionsthat will
eventuallybe discarded.

Sincethe selected analysishasto be the bestin a meaningfulsense(for example,bestin
probabilisticsense),it meansthat a goodscoringmechanismwill play a very importantrole.
A score functionwhich hassuchoptimality propertywill be describedin this chapter.

Thereare severalmethodsto accelerate the parsingprocess[Su 88b], one of which is
to decrease the size of the searching spacein the whole parsingstatespace. This can be
accomplishedwith a scoredparsingalgorithmthattruncatesunlikely pathsasearlyaspossible
[Su 87b] andhencedecreasesthe parsingtime. Suchparsingstrategyis referredto asscored
truncation.

Thesearchingstrategyfor a scoredparsingalgorithmcanbeeitherparallelor sequential.
A parallel truncationalgorithm([Su87b])wouldexpandtheparsingstatespacein thebreadth-
first direction, which allowsa numberof, sayN, alternative pathsto expandat theendof each
step.A typical paralleltruncationalgorithmis thebeamsearchalgorithmin AI literatures.A
sequentialtruncationalgorithm,on the otherhand,would branchin the depth-firstdirection.
This strategyhassomeadvantagesover its parallel counterpart.First, it is fasterin gettingthe
first parsethanthe parallelapproach.This featuremakesit possibleto get a fast responseif
the systemis facilitated with a goodscoringmechanism,andit canbe beneficial for systems
which selectthefirst parseastheir goal. (This is often thecasefor smallMT systems.)Once
thefirst parseis acquired,we canalsouseits scoreto establisha lower boundfor all possible
scores;any parsewhosescoreis lower thanthis lower boundcanbe safely truncated.Thus,
we canusethis boundto speedup the parsingprocessfurther. Secondly,it is mucheasierto
implementa sequentialtruncationversionthana parallel one,andit takeslessmemoryspace
in the sequentialversionbecauseno multiple temporarycopiesof differentanalysesneedto
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be saved.Finally, the sequentialtruncationstrategycancut down moresearchingspacethan
its parallelcounterpartbecauseit will try lesspathswhena goodscoringmechanismis given.

Furthermore,a real systemusually set a time limit to stop the parsingprocesswhen
a sentenceis taking too long to parsebecauseof its long sentencelength or complicated
structure. Under such circumstances, the sequentialsearchingstrategyis better than the
parallel approachbecause we are likely to have somecompletesyntax treesto work with
evenif the parsingwassuspendedabnormallywhenits time expires.On the otherhand,the
parallel approachwill not have this advantagebecauseit may not haveany on-goingpath
that traverseto the end.

In this chapter,we will give an informal introductionto the Score Functionusedin our
machinetranslationsystem.Somedesirablefeaturesof this scorefunction will be described
andits application to GeneralizedLR parsingis introduced.We will alsoproposea sequential
truncationparsingalgorithmto reducethe searchingspaceof the parsingprocess,andhence
improving the parsingefficiency. This algorithm employsthe scorefunction proposedin
[Su 88a], which takes advantages of the probabilistic characteristics of the syntactic and
semanticinformation in the sentences.Preliminary testson this algorithm were conducted
with somespecialversionsof our machinetranslationsystem,theARCHTRAN [Su 87a],and
encouragingresultswere observed.Readersinterestedin the parallel versionof the scored
truncationparsingmechanismcan refer to [Su 87b] for more details.

2. Making Decisions With The Score Function

2.1. Definition of the Score Function
In a scoredparsingsystem,thebestanalysisis selectedbaseon its score.Severalscoring

mechanismshavebeenproposedin the literatures[Robi 82, Benn85, Gars87, Su 88a]. The
one we adoptis the score function proposedin [Su 88a]. This scorefunction measuresthe
degreeof preferenceof asemantically annotatedsyntaxtreeby thefollowing generalformula:

���������
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where Sem, Syn and Lex are the particular semanticinterpretation, syntacticstructure and
lexical feature attachedto a given ambiguousconstructionwhose terminalstringsareWords.
In otherwords,we will assigna higherscoreto a semantically annotatedconstructionif it is
often regardedasthe mostprobableinterpretation to the terminalstrings.The scorefunction
definedin this way is not only linguistically significantbut also statisticallyoptimal as we
shall show later. Hence,it providesa way to bridge the gap betweenlinguistic knowledge
and statistic reality.

2.2. Why Score Function
The above probabilistic model has some advantages over traditional rule-basedap-

proaches,which areusuallyad hoc. First of all, becausethescorefunction is statistics-based,
it is moreobjective(in statisticsense)thanthecertainty factorsassignedby linguistic experts
(linguists) in a rule-basedexpert system;a scoreof 0.8 defined in statistic sensewill be
significantlydifferentfrom a certaintyfactorof 0.8assignedin expert’ssense. It is alsomuch
easierto train and maintain the probability entriesthan linguistic rules. Furthermore,the
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embeddedknowledgein the statisticsdatabase is alwaysconsistentin statisticsense,asop-
posedto conventionalknowledgebases,which usuallycontainsomedegreeof inconsistency.
Anotheradvantageof this scorefunction lies in its flexible extensibility. It canbe extended
easily to lower linguistic levels suchas acoustics,phoneticsand morphology. On the other
hand,it canalsobe extendedto a higher level suchaspragmatics.In fact, we havealready
extendedits definition to dealwith speechrecognitionin someapplications [Chia 89].

The most striking feature of the abovescore function is its optimality when usedas
the preferencemeasureof semantically annotatedsyntaxtrees. (We will take a syntaxtree
annotatedwith semanticfeaturesas the representationof a specificinterpretation to a given
sentencethroughoutour discussion.) To seewhy it is optimal as the preference measure
let’s considerthe following situation. In an attempt to find the bestannotatedsyntax tree
amongthe ambiguousones,we must pay someprice for possiblemisjudgementno matter
what scoringmechanismis used. In general, we want the cost to be minimal. The problem
of finding anoptimalscoringfunctioncanthusbeformulatedasa costminimizationproblem.
Supposethatwe will incur a loss(or cost)of C1 whenwe makea right choiceon thesemantic
interpretation (Semi), syntacticstructure(Synj) and lexical feature(Lexk) for a set of input
strings(Words), anda lossof C2 if we makea wrong choice.Thenthe expected cost,based
on any scoring mechanism,would be

���"$ ��� ����� )+	��
����� ���,�%�	�2��������
 0 � �"!"#%$'&
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Since, in general,we will incur small or no loss when we make a right choice, so
C1 can be set zero (or negative). Furthermore,we can think of C2 as a positive constant
correspondingto the extra efforts for post-editing. Under suchcircumstances, to minimize
the cost of disambiguationwould be equivalentto maximizing P(Semi , Synj, Lexk | Words),
namelyto maximizeour score function. Therefore, with the scorefunction asthe preference
measure,we will incur minimal cost, in Bayesiansense,for disambiguation.

2.3. Decomposition of Score Function
Now that we have a good senseabout the optimality property of the score function,

how can we use this generalformula to deal with the generalproblemsof disambiguation
in linguistic level? In the following sections,we will briefly outline somepossibleways to
apply the scorefunction to differentdriving mechanismsby decomposingthe scorefunction
in differentways. In particular, we will mapthis function to a Generalized LR parser(GLR
parserfor short) which can handleaugmentedcontext-freegrammarsfor natural language
processing.

First of all, let’s decomposethe scorefunction to show how the scorefunction can be
related to traditionalstratified analysisparadigm.To simplify the analysistasksin different
analysisphases,we can usually computea scoreby dividing the scorefunction into three
componentsas follows :

�
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wherew1 throughwn are the input words in the given sentence.In this formula, the three
product terms are referred to as semanticscore (SCOREsem), syntacticscore (SCOREsyn)
and lexical score (SCORElex), respectively.By making suchdecomposition,we can model
traditionalstratified analysisapproacheasily. In otherwords,we canperformlexical analysis,
syntaxanalysisand semanticanalysisbasedon lexical score,syntacticscoreand semantic
score,respectively.The total compositionalscore then servesas the global indicator to the
degreeof preference of a given interpretation.

For simplicity, we will focusonly on the syntacticaspectof this scorefunction, namely
SCOREsyn, and show how to computeSCOREsyn under GLR parsingenvironment. These
techniquescanbe extendedto the othertwo componentsof the compositionalscorefunction
aswell. The goal hereis to get the mostprobablesyntacticstructure when the input words
and their lexical feature (representedby part of speech)are given. We can first simplify
the above syntactic score function as

�
� ������ "% � 	 �����	��& ( ) 	 �,�%�	� 0 ������
'� � � ��������� & �

) 	 �,�%�	� 0 �/����
2& � )+	 �����	� 0 � �
� � �

� � &
, wherec1 to cn arethelexical categories(partsof speech)

correspondingto w1 to wn. In makingthesimplification, weassumethatthesyntacticstructure
is independentof the terminal stringsthemselvesbut dependson their part of speech.This
is usually the casein GLR parsing. After the simplification is made,we can get the score
by properly decomposingthis formula into piecesof probability entries,which can then be
evaluated stepwisethroughthe processof GLR parsing. In the following sections,two such
formulationsfor syntacticscoreareproposedto showthe versatility of the scorefunction.

2.4. Syntactic Score in Context SensitiveModel
To show the mechanismfor computingsyntacticscore,first refer to the syntax tree in

Fig. 1. This syntax tree is decomposedinto a numberof phraselevels (L1 ... L8), each
phraselevel beinga setof terminalor nonterminalsymbolsthat correspondsto a sentential
form of the sentence. The phraselevels shown here correspondto a canonicalderivation
sequencethat is producedby a generalized LR bottom-upparsingalgorithm. Let L i be the
i-th phraselevel. Thena transitionfrom phraselevel L i+1 to phraselevel L i correspondsto
a derivationof a nonterminalat time ti . On the otherhand,transitionfrom L i to L i+1 would
be equivalentto a reductionat ti .

After thesyntaxtreeis decomposedinto phraselevels,we canexpressthesyntacticscore
in termsof thesephraselevels. For example,the syntacticscoreof the syntaxtree in Fig. 1
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can be formulatedas the following conditionalprobability:
�
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� )+	 ��� � ��� � � �
���'0 � �.&

� )+	 ��� 0 ���
� � �
�����.����&�� )+	 ��� 0 ���

� � �
� ��&�� ����� � ) 	 ���'0 � �.&

� )+	 ��� 0 ����&�� )+	 ��� 0 ����&�� ����� � )+	 ���'0 � �.&
(2)

Note that the product terms in the last formula correspondto the sequenceof rightmost
derivation in a GLR parserwith left and right contextstakeninto account. Therefore,such
formulation is especially useful for generalized LR parsing algorithm in which context-
sensitiveprocessingpower is desirable.

To evaluatethe transitionprobabilitybetweentwo phraselevels,say
) 	 ��� 02����&

, we can
evaluatethe productof probabilitiesof two events. The first probability correspondsto the
eventthat {F, G} are the constituentsto be reduced,andthe secondprobability corresponds
to the eventthat they are reducedto C; both eventsare evaluated underthe contextof {B,
F, G}. The transitionprobability can thus be expressedas:

) 	 � � 02� � & � )+	�� �
	���! � ! ��#�
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To simplify the evaluation,we canapproximatethe full context{B, F, G} with a window of
finite lengtharound{F, G}. The window sizesfor the two subeventsneednot be identical.
According to our experiments, the first term is equal to one in most cases,and it haslittle
contributionin discriminatingdifferentsyntaxstructures.Hence,we canignorethefirst term
and approximatethe transitionprobability with the secondterm. The formulation can thus
be expressedas:

�
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where l i and r i are the left and right contextsof the symbolsto be reduced. The degree
of context-sensitivityis specified by the numberof contextsymbolsto be consulted. This
numberis called theorder of context-sensitivityof thescorefunction. If theorderof context-
sensitivity for left andright contextsarem andn respectively, it is said to operatein LmRn
mode.For example,Eq. (2) canbe further reducedto the following equationwhenoperating
in L1R1 mode :
�
� ������ "% � 	 �,�%� � &
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where“
/
” is the null symbol. In this case,only oneimmediatecontextsymbol,either to the

left or to the right of the reducedsymbols,is consulted.

Many systemshavetried to adoptL0R0 modeof operationin probabilisticparsing. A
probability is assignedto eachproductionrule. The scoreis then computedas the product
of theseprobabilities. However,evenif the languagecan be represented by a context-free
grammar,it doesnot meanthat its rules are usedin context-free(statistically independent)
manner;the L0R0 model is valid only whenthe adoptionof eachrule is independentof the
precedinguseof theotherrules. As a result,whenthecontextualinformationof the language
becomesmoreandmoreimportant,this operationmodewill becomelessfeasible.Although
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thecontext-sensitivemodelin Eq. (2) providesthecapability to dealwith intra-levelcontext-
sensitivity, it fails to catch inter-level correlation. In practice, theevents{L 2 ... L8} in Eq. (2)
shouldbe jointly considered,insteadof beingdecomposedinto seventermsthat areassumed
to be independent.Otherwise,a syntaxtreewith morenodes(i.e. more levels)will be less
likely to gethigh scorebecausethemultiplication of thelargenumberof probabilitiestendsto
reduceits score.However,the parameter spacewill be too large if we jointly considermany
phraselevels. An alternativeto relieve sucha normalization problemis to compactmultiple
highly correlated phraselevels in evaluating the scoreasformulatedin the next section.

2.5. Syntactic Score in Run-Time Model
The formulation for syntacticscorecomputationin Eq. (2) and(3) cantakeplacewhen

the parseris executing a reduceaction. We shall now showanotheralternative in which the
computationtakesplacewhen a shift action is executed.

In GLR parsing,we may wish the computationof scoresto occurafter an input word is
just fetched.This is often the casein parallel parsingalgorithms(suchasparallel truncation
algorithmandTomita’salgorithm)wherea numberof pathsarecomparedbasedon thepartial
cumulativescoresof thesameinput subsentence(or moreexactly,basedon thesameprefix).

This canbe doneby compactingmultiple reduceactionsanda singleshift into onestep
and formulatethe syntacticscoreSCOREsyn(SynA) as follows.

���������
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(4)

The probability entriesin the last simplified formula correspondto a sequenceof changein
the stackcontentsbetweentwo shifts. In fact, the stackcontentsimmediately after c1, c2,
c3, c4 and$ (the end-of-sentencesymbol)arepushedonto the stackare{c1, (c2, c3, c4, $)},
{D, c2, (c3, c4, $)}, {B, c3, (c4, $)}, {B, F, c4, ($)} and {A, $, ()}, which are the prefix of
L1, L2, L4, L5 andL8, respectively.(The terminalsymbolsin the parenthesesarethe input
symbolsnot yet fetched.) Suchformulationmakesrun-timescorecomputationan easytask
becausewe can simply monitor the statusof the stackand computethe probability entries
step-by-stepafter an input word is shifted.

Two assumptionswere madein formulating Eq. (2) – (4). First, it is assumedthat the
formationof phraselevel i is only dependenton its immediate lower phraselevel, sincemost
information percolatedfrom other lower levels is contained in that level. And second,a
reductionor derivation is only locally contextsensitiveto its immediateleft or right context
at eachphraselevel. This assumptionis also supportedin other systemsas well [Marc 80,
Gars 87].

2.6. Brief Summary
From the previoussections,it is easyto seethat the whole scoringmechanismconsists

of three main components:

1. A score functionwhich definesthe preference measureof a given interpretation.
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2. Dif ferent types of decompositionschemeswhich apply the score function to different
driving mechanismsor algorithmsin different mode.

3. A simplification schemeto simplify the computationfor eachdecompositionscheme,
which also determinesthe order of context-sensitivity.

We haveintroducedonly two decompositionschemesin theprevioussections.Theversatility
of this scoring mechanism,however, is beyondwhat we have describedhere. For more
information about other formulationsand the comparisonto other probabilistic models in
the wide variety of linguistic levels, interestedreaderscan refer to [Su 91] for more formal
description.

With sucha scorefunction, we canachieve arbitrarydegreeof context-sensitiveparsing
capability (in probabilistic sense)with a context-freegrammar. Such extensionis quite
different from other trainable grammar like [Bake 79], where N-gram paradigmis used
to train a context-freegrammarwith restricted(andhenceunnatural)right handsidesymbols.
Under our scorefunction paradigm,the grammarrules can be any augmentedcontext-free
grammarwritten by linguists and the contextualinformation is embeddedin the statistic
knowledgeof the scorefunction (and other augmentation not mentionedhere). The score
function thus integrateslinguistic reality andstatisticknowledgein an elegantway.

A simulationbasedsolely on the syntacticscore wasconductedandreportedin [Su 88a]
with a full-path searchingalgorithm. The result showsthat the correctsyntacticstructures
of over 85% of the testsentencesweresuccessfullyrankedat the first placewhena total of
3 local left and right contextsymbolswere consulted.In addition,over 93% of the correct
syntaxtreesarerankedat thefirst or secondplacebasedon thesyntacticscorewith 2 context
symbols. With semanticscore incorporatedinto the mechanism,the resultsshouldbe even
more promising.

3. The Sequential Truncation Algorithm

3.1. Basic Algorithm

Using the score function defined in the previoussection,we will presentthe idea of
sequentialtruncationalgorithm with Fig. 2.
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Eachpathin Fig. 2 correspondsto a possiblederivationof a given sentence. The parser
will traversethesearchingtreewith thedepth-firststrategy.But duringthesearchingprocess,
the parsercomparesthe accumulated running scoreof each path with a running threshold
constantC(�

i) at eachstep i when the i-th word is fetched. If the scoreof the path is less
than the running thresholdC(�

i), it will be truncated, i.e. blocked,and the next path will
be tried. This processcontinuesuntil we get the completeparsetree. The fraction of paths
to be blockedat eachstep is determinedby the control variable �

i which will be defined
later in the next section.

After we obtain the first completeparsetree,a lower boundfor the scores,initially set
to the scoreof the first parsetree,is alsoacquired. The parserwill continueto traverseother
paths,but from now on, the scoreof eachpath will also be comparedwith the currentlow
boundfor the scoresin addition to be comparedwith the running threshold.This additional
comparisonis similar to the branchand boundstrategyemployedin AI applications [Wins
84] andit will acceleratethe parsingprocessfurther. If the test fails in eithercase,this path
will be truncated. Continuing in this manner,we will updatethe lower boundwhenevera
new completeparsetreehasa scorehigher thancurrentlower bound,and repeatthe whole
processuntil the end of the entire searchingprocess. The whole processis shown in the
flow chart in Fig. 3.
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Whenall thepathsareblockedwithout arriving at anycompleteparsetree,we canadopt
one of two possiblestrategies.First, we could loosenthe running thresholds,i.e. lowering
C(�

i), and try the deepestpath goneso far again. Second,we can processthis sentencein
fail-soft mode. The fail-soft mechanismwill skip and discardthe currentstateand attempt
to continuethe parsingat somelater point.

As we can see, the score of each syntax tree can be expressedas the product of a
sequenceof conditionalprobabilities suchas the one shown in Eq. (4). Each term in the
productcorrespondsto a transitionbetweentwo shift actionsand is evaluated immediately
after a shift. To avoid mathematical underflow,we shall takethe logarithmon both sidesof
Eq. (4) to get a logarithmic scorein the form of :

����� ����������� 	��+
�������� � � � �� �
� & �	�
� ����
��� $ 


�	�
(5)

whereL is the length of the sentence,X i denotesthe set of phraselevels which havebeen
encounteredup to the i-th shift, and X � i is the complementof X i, namelythe set of phrase
levels not yet encountered up to the i-th shift.

3.2. Analytic Description
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The effectivenessof the sequentialtruncation algorithm is closely related to the distri-
bution of scoresof the databaseand the distribution of scoresof the input sentences.This
phenomenonwill be illustrated in the following paragraphs.

If we define
� ���

��� � & ����� � � 
 �� $ 

�
�
, then

� � is the accumulated logarithmicscoreup to

the j-th word, which is also the accumulated scoreafter the j-th shift of the sentence.

Supposewe haveM sentenceswith their correctparsetreesin the database. For each
parsetree, we can evaluate

� � by using the logarithmic scorefunction defined in Eq. (5).
So for the k-th sentencein the database,we obtain a sequence

���&�� ���#��
	�	�	 �
���� , where
����

is the accumulated logarithmic scoreof the k-th sentenceup to the j-th step,and Lk is the
length of the k-th sentence.

Given theseaccumulative scoresfound in the database,we can definea set of random
variablesY i correspondingto

���
�
, with k rangedfrom 1 to M. In other words, Y i is the

randomvariablecorrespondingto the accumulative logarithmicscoresup to the i-th word of
the sentencesin the database.Using the samplesin the database,we can draw a histogram
for eachY i andapproximateeachhistogramby a continuousdensityfunction �

�
� ��� �

.

To allow a fraction �

i, say99%,of thebestparsetreesin thedatabaseto passthethreshold
testat stepi, we canseta constantC(�

i) suchthat � ���
�
� � �

�

�
��� � �

�
, whereC(�

i) is the
runningthresholdthatwe will useto comparewith therunningaccumulatedlogarithmicscore
at step i. Thosepathswith runningaccumulated logarithmicscore

�
�

lessthanC(�

i) would
beblockedat the i-th step.Using the notationdefinedabove,theprobabilityof obtainingthe

desiredparsetree for a sentencewith length Lk would be

�
��� � & �

�
.

For the input sentencesto be parsed,we can also definea set of randomvariables Zi

correspondingto the distributionof the accumulated logarithmicscoresat the i-th stepanda
setof densityfunction �

�
� ��� � associatedwith Zi . Theseprobabilityentrieswould beevaluated

from the ambiguoustreesof the input sentences.Fig. 4 showsthe relationshipbetweenthe
probability density function �

�
� ��� � (the distribution of the i-th running scoreof the input

text) and the probability densityfunction �
�
� ��� � (the distributionof cumulativescoreof the

database.) In the figure, the dashedlines indicate the meansof the two density functions.
Sincethe step-wisecumulative scoresin the databaseare evaluated using the correctparse
treesin the database,we would expectthat the expectation of Y i is greaterthan that of Zi

and the varianceof Y i is lessthan that of Zi . In other words, we haveE[Y i ] > E[Zi ] and
Var[Yi ]<Var[Zi ] in normal situation.
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Let
�

i denote � �� � � �
�

�
���

, where � �� ��� � is the cumulateddistribution function of Zi ,
then

�
i is theprobability thata pathwill be truncated at the i-th stepof thesearchingprocess.

By usingthis sequentialtruncationmethod,thesearchingspacewould thenbeapproximately

reducedto

�
��� � & ������� � � , which is a small portion of the original searchingspacegenerated

by a full path searchingalgorithm. Thereforethe efficiency of parsingis increased. Since�
i in Fig. 4a is less than that in Fig. 4b, which correspondto the situation that has a

large expectation difference(E[Y i ]-E[Z i ]) and a small varianceratio (Var[Yi]/Var[Zi ]), the
underlyinggrammarthat hasthe propertyof Fig. 4b would benefitmostfrom this algorithm.
In addition,we canseethat if we increasethe runningthresholdC(�

i), we will get a greater�
i anda lower �

i. The parsingefficiency will thus increase,but the probability (i.e.

� ��� � & �

�
)

thatwe will get thedesiredparsetreewould decrease. How to selecta goodC(�

i) to achieve
a desiredsuccessrate is thus very important. In the following section,this issuewould be
discussedin greaterdetails.

4. How To Set The Running Threshold

4.1. Static Running Threshold
Usingthemodelgivenin thelastsection,theprobabilitythatwewill gettheglobaloptimal

solution,i.e. the parsetreewith the largestscore,for a sentenceof lengthL is � � � ��� � & �

�
,

whereKL is a constantpre-selected by the systemdesigneras a compromisebetweenthe
parsingefficiency andthe translationquality. Assuming that the averagebranchingfactor for
eachpath is a constantN, thenthe averagetotal numberof pathswe haveto try is :� �

�
&�" " "

� � � �	��
���
 ��������&(� 
���
���
 ������� &+� 
���
 ������� #-� 
���
 	�	�	
�	��
 � � 
���
�� � �

&(� 
�� # 
�� � �
&(� 
�� � �

#3� 
 	�	�	
�

�	��
 ������������� �! �#"
�%$ �&'  ��(*),+ '.-0/1 (6)
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where (*) + � - � ) � ��� � - . In order to minimize the path number,we must have (*) + � -��(*),+�� -��
	�	�	�� (*),+ � - becauseh(+ i) hasmore significant influenceon the numberof paths
to be truncatedthan h(+ i+1).

The problemof selectingan appropriaterunning thresholdC(+ i) is now convertedinto

oneof minimizing 
 ),+ � 	�	�	 + � - underthe constraintof

���! � + � ��� � . Taking the logarithmon

both sides,we get

���! ����� 
 + � � ��� 
 � � . Then the Lagrangemultiplier � is introducedto

get 
�� ) + ��� � � + � - � 
 ) + ��� � � + � - � �
$ ���! ����� 
 + � . Takingthepartialderivativeof 
�� with respect

to + 1...+ L, we will get the following simultaneousequations:

� 
��� + � � ��! � 
��� +"� � ��! 	�	�	 � 
��� + � � ��! #%$'&
�� �! � ��� 
 + � � ��� 
 � � (7)

In the aboveequations,thereare (L+1) variables, which are + 1...+ L, and � , and (L+1)
equations.So, + 1...+ L canbe solvedby a numericalmethod.Since + i is usuallyvery close
to 1, we can linearize the function h(+ i) in the region around + i=1 and approximateit by(*),+ � -)( #

$
+ � � * . In this way, we cansubstituteh(+ i) in the aboveequationby #

$
+ � � *

to simplify the calculation.

During our derivation, we haveassumedthat theaveragebranchingfactorat eachstageis
a constantN. This constraintcanbe relaxedby assumingthe averagebranchingfactor at the
i-th stageto be Ni. In this way, we will get a morecomplicated expressionfor 
 ),+ � 	�	�	 + � - ,
but it can still be solved in the sameway.

The runningthresholdC(+ i) cannow be computedoff-line by selectingdifferentKL for
differentsentencelengthL. We will call this setof C(+ i) thestatic runningthreshold,because
oncethey arecomputed,they will not be changedduring the parsingprocess.

4.2. Dynamic Running Threshold
The static thresholdderived in the abovesectioncan serveas a limiting factor in the

truncationalgorithm. However,if we arrive at a completeparsetreewith muchhigherfinal
accumulated running scorethan the final accumulated running threshold,then the running
thresholdshould be adjustedto reflect the higher final accumulated running score. Such
adjustmentis necessarybecauseevenif a pathcanpassall the thresholdtestsit might still be
discardedwhencomparedwith themuchhigherfinal accumulatedrunningscore.Therefore, it
would bebetterif therunningthresholdis changedto C+ ( + i)=C(+ i)+ , C(+ i), where , C(+ i) is
setto -

$
)/. �� �10 ) + � - - , 0<- <1, and . �

�
is theaccumulatedscoreof thecurrentbestparsetree

at the i-th step.The tunningconstant- is anothercontrol variablepre-selectedby thesystem
designer.SinceC+ ( + i) is adjusteddynamically it will becalledthedynamicrunningthreshold.
Using the dynamicrunningthreshold,the efficiency of parsingwould be further improved.

If it so happenthat all pathsareblockedbeforea completeparsetree is formed,we can
find thedeepestpath(assumingit to beat the j-th step)amongtheblockedonesandreactivate
it with a loweredrunningthresholdof C+ ( + j)= . +' , where . +' is thescoreof this pathat the j-th
step.Sincetheprocedureto lower therunningthresholdis quitecomplicatedit might bemore
convenientjust to invoke the fail-soft mechanismfor sentenceswhosepathsareall blocked.
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5. Scored Truncation vs Charted Parsing

It is interestingto makea comparisonbetweenthe well-known chartmechanism[Wino
83] and the truncationalgorithm. In manycurrentsystems,a chart-likeapproachis usedto
acceleratethe parsingspeedby avoiding the reparsingoverheadof substructureswhich had
beenconstructedpreviously. In the previoussections,we have demonstratedthe speedup
effects of the scoredsequentialtruncation algorithm, which accelerates parsing speedby
cutting down the searchingspacewith the aids of a good scoringfunction. Is it profitable
to combinethesetwo mechanismsinto one ? The answerseemsto be “yes” if the parsing
speedis the only concern.

Nevertheless, there is a few words to be said about the combination of these two
mechanisms. When the truncation algorithm is adoptedin a chart parser, the best tree
originally selected by a chartparsermight not appearin the treesproducedby its truncation
version. This phenomenonlies in the fact that chart mechanism[Wino 83] is essentiallyin
conflict with the truncation mechanismin their operations.The reasonfor having chart is
to be able to retain all subtreesthat were parsedin previouspath traversal. So, when we
backtrack to the next pathandarrive at the samesetof input strings,the samesubtreescan
be usedagainwithout reparsing.On the contrary,the ideabehindthe truncationmechanism
is to discard a subtreewhich haslow scoreasearly aspossible.Therefore, if we adoptthe
truncationmechanism during chartedparsing,not every possible subtreebetweena set of
input wordswill be successfullyconstructedandstoredinto the chart. For example,in Fig.
5, therearetwo possiblesubtreesbetweenb andc. Whenthepathsin block A areexpanded,
one of the subtreesis discardedwhile the other is storedinto the chart.

The subtreemay be discardedfor the following two reasons.First, it might be due to
the semanticconstraintson the contextualdependencyof the system. Second,the subtree
might bediscardedbecauseof its small runningaccumulatedscore(andthustruncated by the
truncationmechanism.)Either will leaveus a chartwith incomplete subchart.So, this might
result in the bestpossibletree being missedas a side-effect of using this chart underother
contextualenvironment.For instance,the besttree in Fig. 5 might be constructedwith the
secondsubtree,the left contextL2 and the right contextR2. But, sincethe path expansion
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startingfrom the left contextL1 hasthe secondsubtreediscardedbecauseof its low score
underthe contextof L1 andR1, the besttreewill neverbe formed. Therefore, with a chart
having incompletesubcharts,the possibility of obtainingthe besttree might be affectedby
the pathstruncated before.

Onesolution to this incompatibility problemis to mark the subchartsasbeingcomplete
or incomplete. If an incompletesubchartis encountered again, it will be reparsed.On the
otherhand,if a completesetof chartis encountered, thesubtreescanbecopieddirectly from
thechart. Anothersolutionis to suspendthetruncationmechanismwhena chartis beingtried
the first time. And if subtreesare copieddirectly from the chart, the truncationmechanism
resumesits normaloperation.In this way, it is guaranteedthat everysubchartin the chart is
complete.Both of thesesolutionswill introducesomeoverhead.This compromise,however,
is unavoidableif the advantagesof using chart are to be retained.

6. Testing

We havecompleted two preliminary testson the truncationalgorithm with two special
versionsof our English-ChineseMT system,theARCHTRAN. Thetestsusea databasewhich
containsthe requiredprobability entriesacquiredfrom a set of 1430 sentences.A more
extendedtest on a databaseof 1607sentences is also conducted.The following paragraphs
will describethesetests in detail.

In the first experiment, the parsingtime neededby a chart parser is comparedwith the
time neededby the samechartparserwhich is augmentedwith truncationmechanism.The
chartparseradopteda bottom-upparsingwith top-downfiltering strategy(TD+BU for short,
see[Su 87a]). Its parsingefficiency is aboutthesameorderasTomita’sextendedchartparser
[Tomi 87, Su 90] and it hasa meanspeed-upfactor of about43 over traditional uncharted
LR parser. From the test, we found that the averageparsingtime by the chart parserwith
truncationis improvedby a factor of about4. For somesentences,the improvementcango
as high as a factor of 20. This result is encouraging.

In the secondexperiment,we convertedthe chart parserfor the first experimentinto
a chartless one. Similar test is conductedfor this chartless parser but with a smaller
analysisgrammar.The resultshowsthat the total parsingtime for this parserwith truncation
mechanismaddedis better than the sameparserwithout truncationby a factor of about3.
Becausetheunchartedparsersarerelativelymoreslowerthanthepreviouschartedones,only
a few sentencesare testedwhich account for the abovespeedupfactor.

In the previoustwo tests,the size of the test samplesis small. A more extendedtest
was conductedwith even more encouragingresults. The results,togetherwith a sentence
lengthdistributioncurve,areshownin Fig. 6. The speedupfactorsareshownin logarithmic
scale. More detailed test data is listed in the Appendix of this chapter. In the test, two
parserswere used to show the effects of sequentialtruncation algorithm with respectto
chartedparsing. The first parseris a TD+BU chartparser,which doesnot adopttruncation
algorithm. The secondparseris a truncation-basedbottom-up(BU) parser,which doesnot
use chart mechanism. The scoredatabasefor the secondparsercontains1607 sentences
which aredecomposedinto probabilityentriesin L2R1 format (that is, 2 left contextsymbols
and1 right lookaheadareconsulted).The augmentedcontext-freegrammarusedin the test
containsa setof 1046productionrules. Undersuchtestenvironmentandtaking thesentence
length distribution into account, the meanspeed-upfactor for a set of 165 sentencesfrom
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inside the databaseis about17 (closetest). For anotherset of test datawhich contains196
sentencesfrom outsidethe databasethe speed-upfactor is about9 (opentest). In general,
the speed-upfactors vary with the numberof ambiguity and the length of the sentences.
(Individual comparisonshowsspeed-upfactorsrangingfrom 1 to morethan100in bothopen
and close tests.) Nevertheless,the figure showsa tendencyof increasing speed-upfactors
with length (and hencewith structuralcomplexity) of the sentences.This tendencyis very
encouragingbecausea truncationalgorithmis mostbeneficial for long sentencesin which a
large numberof pathscan be cut down.

In the abovetests,only syntacticscoreand static thresholdwere used. We expectthat
more searchingspacewill be cut down and hencelarger speed-upfactorswill result when
semanticscoreanddynamicrunningthresholdareincorporatedinto the truncationalgorithm.
From the positive resultsof the aboveexperiments,we have shown the inclusion of the
sequentialtruncationalgorithm is advantageousfor a MT system.

7. Concluding Remarks

In an operationalmachinetranslationsystem,it is importantto arrive at a goodanalysis
for a sentencein a reasonablyshort time. Oneway to achievethis is to decreasethe parsing
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time by reducingthe searchingspace.We haveproposeda sequentialtruncation algorithm
with a score functionto achievethis goal. Thereareseveralreasonsfor adoptingthis strategy.
First, the first parsetree with a moderatequality can be found quickly and easily. Second,
the runningthresholdservesto truncatepart of the pathsthat is quite unlikely to leadto the
bestanalysis,and thus greatly reducesthe searchingspace.

The optimality propertyof the scorefunction hasbeendescribedin this chapter.Some
possibledecompositionschemesfor tailoring this function to a GLR parserare also intro-
duced. In particular, we have shown how to model the stratified analysisparadigmwith
the scorefunction, anddemonstratedthe versatility of the scorefunction by introducingtwo
decompositionschemesabout the syntacticscore.

In the sequentialtruncationstrategy,a sequenceof runningthresholdsareusedto bound
the searchingspaceduring eachstepof the scoredparsingprocess.Additional speedupcan
beacquiredby a branch-and-boundstrategyif theaccumulatedscorefor a parseis lower than
a dynamically adjustedlower bound.

We have pointed out the incompatibility problem betweenthe use of chart and the
truncation mechanism.As our current researchtopic, we shall resolvethe incompatibility
problembetweenthe chartmechanismandthe truncationalgorithm,andincludethe solution
into our working MT system,the ARCHTRAN.

We havemadea pilot test on the truncationmechanism with a chart parserthat adopts
bottom-upparsingwith top-downfiltering strategy. With a database of 1430 sentences,the
result indicates an averageimprovementin the parsing time by a factor of 4 (for some
sentencesthe improvementgoesas high as a factor of 20). In anotherpilot test on the
truncationmechanism,the parsingtime is testedfor a chartlessparserthat adoptssequential
parsingstrategy. The result showsan improvementin parsing time by a factor of 3 for
the inclusion of the truncationmechanism.Theseencouragingresultsdemonstratea great
promisefor the sequentialtruncationstrategy. In anotherextendedtest, we haveachieved
meanspeed-upfactorsof 9 and17 for opentestandclosetest,respectively.This resultshows
a greatimprovementof the sequentialtruncationalgorithmover conventionalchartparserif
a good scorefunction is available.
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9. Appendix : Open Test and Close Test

The following tablesshowthe resultsof theopenandclosetestsdescribedin thechapter
(seealso Fig. 6). The environmentunder which the testswere conductedis summarized
as follows :

• Parser#1 : [-Truncation] [+Chart] [TD+BU]

• Parser#2 : [+Truncation] [-Chart] [BU] (Bottom Up)

• ScoreData Base: 1607 sentences(L2R1)

• Grammar: 1046 productionrules

• OpenTest : 196 sentences(executed at SUN-4/260)

• CloseTest : 165 sentences(executed at SUN-4/110)

• Mean Speed-Up: OpenTest = 9 & CloseTest = 17

CLOSE TEST

Length No. of Test

1st Parser 2nd Parser

Speed-Up

(words) Sentences Total CPU Time
(sec)

Total CPU Time
(sec)

(1st / 2nd)

3 2 2.85 1.09 2.61

4 2 5.81 2.92 1.99

5 2 2.63 1.37 1.92

6 2 31.62 6.12 5.17

7 2 33.99 2.77 12.27

8 2 19.60 5.38 3.64

9 2 15.31 7.80 1.96

10 5 175.86 39.50 4.45

11 5 518.89 56.93 9.11

12 4 387.64 40.74 9.51

13 3 448.02 36.33 12.33

14 5 3647.54 86.29 42.27

15 3 143.51 125.65 1.14

16 6 300.34 175.57 1.71

17 11 1950.57 237.51 8.21

18 12 16901.77 360.53 46.88

19 13 4882.46 448.87 10.88

20 18 13148.05 785.17 16.75

21 14 11560.29 957.19 12.08
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22 12 7624.84 560.50 13.60

23 9 33879.85 801.12 42.29

24 6 6377.89 292.22 21.83

25 2 407.79 138.53 2.94

26 3 1534.79 97.97 15.67

27 3 8949.71 370.90 24.13

28 2 6651.16 86.40 76.98

29 3 4236.36 135.33 31.30

30 3 2444.76 83.89 29.14

31 2 1749.56 63.50 27.55

32 2 2881.16 140.11 20.56

33 2 8471.91 75.48 112.24

34 2 15669.64 161.78 96.86

36 1 2533.35 46.48 54.50

TOTAL 165 157589.52 6431.94 24.50

MEAN (takesentencelengthdistribution into account) 17.22

OPEN TEST

Length No. of Test

1st Parser 2nd Parser

Speed-Up

(words) Sentences Total CPU Time
(sec)

Total CPU Time
(sec)

(1st / 2nd)

3 4 3.70 1.76 2.10

4 5 7.29 1.50 4.86

5 5 6.31 3.99 1.58

6 5 61.88 4.73 13.08

7 9 39.12 16.62 2.35

8 10 79.52 27.17 2.93

9 10 315.52 67.75 4.66

10 10 266.15 73.72 3.61

11 9 377.72 36.81 10.26

12 9 154.69 81.72 1.89

13 10 359.94 128.87 2.79

14 9 2779.25 126.72 21.93
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15 8 179.15 137.21 1.31

16 9 587.23 198.93 2.95

17 8 2121.77 358.72 5.91

18 9 5391.85 328.23 16.43

19 10 1814.09 385.68 4.70

20 11 4888.94 807.30 6.06

21 14 8916.45 1217.73 7.32

22 8 1104.86 406.98 2.71

23 4 1238.93 162.71 7.61

24 4 2249.22 268.99 8.36

25 3 1905.49 90.29 21.10

26 4 10292.94 563.95 18.25

27 2 8759.70 83.29 105.17

28 1 677.92 22.07 30.72

29 6 5969.74 209.76 28.46

TOTAL 196 60549.37 5813.20 10.42

MEAN (takesentencelengthdistribution into account) 9.07

20 May 7, 1991 14:38 (v1.3)


