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1. Introduction

In a machinetranslationsystem the numberof possibleanalysesassociateavith a given
sentenceas usually very large due to the ambiguousnatureof naturallanguages.But, it is
desirablethat only the bestoneor two analysede translatecand passedo the post-editorso
asto reducethe requiredefforts of post-editing.In addition, processingime for a sentence
is usually limited when processinga large numberof sentencesn batchmode. Therefore,it
is important,in a practi@al machinetranslationsystem,to obtain the bestsyntaxtree which
hasthe bestannotatedsemanticinterpretaion within a reasonablyshott time. This is only
possiblewith an intelligent parsing algorithm which can truncate undesirableanalysesas
early as possibleand avoid wastingtime in parsingthoseambiguousconstructionghat will
eventually be discarded.

Sincethe selecte analysishasto be the bestin a meaningfulsensgfor example bestin
probabilisticsense)jt meansthat a good scoringmechanisnwill play a very importantrole.
A scoie functionwhich hassuchoptimality propertywill be describedn this chapter.

There are severalmethodsto accderate the parsingprocess[Su 88b], one of which is
to decreae the size of the seaching spacein the whole parsingstatespace. This can be
accomplishedvith a scoed parsingalgorithmthattruncatesunlikely pathsasearlyaspossible
[Su 87b] andhencedecreaesthe parsingtime. Suchparsingstrategyis referredto asscored
truncation.

The searchingstrategyfor a scoredparsingalgorithmcanbe eitherparallelor sequential.
A paralleltruncationalgorithm([Su 87b]) would expandhe parsingstatespacan the breadth-
first direction, which allowsa numberof, sayN, alternatve pathsto expandat the endof each
step. A typical paralleltruncationalgorithmis the beamsearchalgorithmin Al literatures. A
sequentiatruncationalgorithm, on the other hand,would branchin the depth-firstdirection.
This strategyhassomeadvantagesverits paralld counterpart First, it is fasterin gettingthe
first parsethanthe parallelapproach.This featuremakesit possibleto get a fast responsef
the systemis facilitated with a good scoringmechanismandit canbe beneficid for systems
which selectthe first parseastheir goal. (This is oftenthe casefor smallMT systems.)Once
thefirst parseis acquired,we canalsouseits scoreto establisha lower boundfor all possible
scores;any parsewhosescoreis lower thanthis lower boundcan be safelytruncated.Thus,
we canusethis boundto speedup the parsingprocesdurther. Secondly,it is mucheasierto
implementa sequentiatruncationversionthana paralld one,andit takeslessmemoryspace
in the sequentialversionbecauseno multiple temporarycopiesof differentanalyseseedto
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be saved.Finally, the sequentiatruncationstrategycan cut down more searchingspacethan
its parallelcounterparbecauseét will try lesspathswhena goodscoringmechanisms given.

Furthermore,a real systemusually set a time limit to stop the parsingprocesswhen
a sentences taking too long to parsebecauseof its long sentencdength or complicded
structure. Under such circumstancs, the sequentialsearchingstrategyis better than the
paralld approachbecaise we are likely to have somecompletesyntaxtreesto work with
evenif the parsingwas suspendecbnormallywhenits time expires.On the otherhand,the
paralld approachwill not havethis advantagebecausdt may not have any on-going path
that traverseto the end.

In this chapter,we will give aninformal introductionto the Scoe Functionusedin our
machinetranslationsystem.Somedesirablefeaturesof this scorefunction will be described
andits applicaion to Generalied LR parsingis introduced.We will alsoproposea sequential
truncation parsingalgorithmto reducethe searchingspaceof the parsingprocessandhence
improving the parsingefficiency. This algorithm employsthe score function proposedin
[Su 88a], which takes advantage of the probabilistic characeristics of the syntactic and
semanticinformation in the sentences.Preliminay testson this algorithm were conducted
with somespecialversionsof our machinetranslationsystemthe ARCHTRAN [Su 87a],and
encouragingesultswere observed. Readeranterestedin the parallel versionof the scored
truncationparsingmechanisncan refer to [Su 87b] for more details.

2. Making Decisions With The Score Function

2.1. Definition of the Score Function

In a scoredparsingsystem the bestanalysisis seleced baseon its score. Severalscoring
mechanism$iavebeenproposedn the literatures[Robi 82, Benn85, Gars87, Su88a]. The
one we adoptis the scoe function proposedn [Su 88a]. This scorefunction measureghe
degreeof preferencef asemanticdy annotategyntaxtreeby thefollowing generaformula:

SCORE (Sem, Syn. Lex, Words) = P (Sem, Syn, Lex Words)

where Sem Synand Lex are the partiaular semanticinterpretation syntacticstructue and
lexical featue attachedto a given ambiguousconstructionwhose terminal stringsare Words.

In otherwords,we will assigna higherscoreto a semanticly annotatecconstructionif it is

often regardedasthe mostprobableinterpretaton to the terminal strings. The scorefunction
definedin this way is not only linguistically significantbut also statistically optimal as we
shall show later. Hence,it providesa way to bridge the gap betweenlinguistic knowledge
and statistic reality.

2.2. Why Score Function

The above probabilistic model has some advantage over traditional rule-basedap-
proacheswhich areusuallyad hoc First of all, becausehe scorefunctionis statistics-based,
it is moreobjective(in statisticsense}hanthe certanty factorsassignedy linguistic experts
(linguists) in a rule-basedexpert system;a scoreof 0.8 definedin statistic sensewill be
significantlydifferentfrom a certaintyfactor of 0.8 assignedn expert’ssense It is alsomuch
easierto train and maintain the probability entriesthan linguistic rules. Furthermore,the
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embeddedknowledgein the statisticsdatabaeis alwaysconsistentn statisticsenseasop-

posedto conventionaknowledgebaseswhich usually containsomedegreeof inconsistency.
Anotheradvantageof this scorefunction lies in its flexible extensibility It canbe extended
easilyto lower linguistic levels suchas acoustics phoneticsand morphology. On the other

hand,it canalsobe extendedo a higherlevel suchas pragmatics.In fact, we havealready
extendedts definition to dealwith speechrecognitionin someapplicatons[Chia 89].

The most striking feature of the above score function is its optimality when used as
the preferencemeasureof semanticdy annotatedsyntaxtrees. (We will take a syntaxtree
annotatedvith semanticfeaturesas the representatiof a specificinterpretaion to a given
sentencethroughoutour discussion.) To seewhy it is optimal as the preferace measure
let's considerthe following situation. In an attempt to find the bestannotatedsyntaxtree
amongthe ambiguousones,we must pay someprice for possiblemisjudgemento matter
what scoringmechanisnis used. In general we want the costto be minimal. The problem
of finding an optimal scoringfunction canthusbe formulatedasa costminimizationproblem.
Supposehatwe will incur aloss(or cost)of C; whenwe makea right choiceon the semantic
interpretdion (Seny), syntacticstructure(Syn) and lexical feature(Lex,) for a setof input
strings(Words), anda lossof C, if we makea wrong choice. Thenthe expecte cost,based
on any scoring mechanismwould be

Cost = C1 x P(Sem;. Syn;. Lexy Words)+ Cy x (1 — P(Sem;. Synj. Lexy Words))

Since, in general,we will incur small or no loss when we make a right choice, so
C, can be set zero (or negative). Furthermore,we can think of C, as a positive constant
correspondingo the extra efforts for post-editing. Under such circumstanes, to minimize
the costof disambiguationwould be equivalentto maximizing P(Sem Syn, Lex | Words),
namelyto maximizeour scoe function Therefore with the scorefunction asthe preferene
measurewe will incur minimal cost in Bayesiansensefor disambiguation.

2.3. Decanposition of Score Function

Now that we have a good senseabout the optimality property of the score function,
how can we usethis generalformula to deal with the generalproblemsof disambiguation
in linguistic level? In the following sections,we will briefly outline somepossiblewaysto
apply the scorefunction to differentdriving mechanism$y decomposinghe scorefunction
in differentways. In particula, we will mapthis functionto a Generalied LR parser(GLR
parserfor short) which can handleaugmentedcontext-freegrammarsfor naturallanguage
processing.

First of all, let's decomposehe scorefunction to show how the scorefunction can be
relatad to traditional stratified analysisparadigm. To simplify the analysistasksin different
analysisphaseswe can usually computea scoreby dividing the scorefunction into three
componentsas follows :

SCORE (Sem;. Synj. Lexy, Words) (1)
= P (Sem;. Syn;. Lexy wy...wy)
= P (Sem; Syn;. Lexy.wy...wyn) x P(Synj Lexy.wq...wyn) x P(Lexy wy...wy)
= SCOREm x SCOREy, x SCORE,,
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wherew; throughw;, are the input wordsin the given sentence.In this formula, the three
product terms are referrel to as semanticscoe (SCOREen), syntacticscoe (SCOREyy)

and lexical score (SCORRy), respectively. By making suchdecompositionwe can model
traditionalstratfied analysisapproacleasily. In otherwords,we canperformlexicd analysis,
syntax analysisand semanticanalysisbasedon lexicd score,syntacticscoreand semantic
score,respectively. The total compositionalscore then servesas the global indicatorto the
degreeof preferene of a given interpretaion.

For simplicity, we will focusonly on the syntacticaspectof this scorefunction, namely
SCOREyn, and show how to computeSCOREyn under GLR parsingenvironment. These
techniquescanbe extendedo the othertwo component®f the compositionalscorefunction
aswell. The goal hereis to get the most probablesyntacticstructue whenthe input words
and their lexical feature (representedy part of speech)are given. We can first simplify
the above syntactic score function as SCOREy, (Syn;) = P (Syn; Lexp. wy..wy,) =~
P (Synj Lexy) = P(Synj ci..c,), Wherecy to ¢, arethelexical categories(partsof speech)
correspondindgo w; to w,. In makingthe simplificalion, we assumehatthe syntacticstructure
is independendf the terminal stringsthemselvedut dependson their part of speech.This
is usually the casein GLR parsing. After the simplification is made,we can get the score
by properly decomposinghis formula into piecesof probability entries,which canthen be
evaluatd stepwisethroughthe processof GLR parsing. In the following sectionstwo such
formulationsfor syntacticscoreare proposedo showthe versatility of the scorefunction.

2.4. Syntactic Score in Context Sensitive Model

To show the mechanisnfor computingsyntacticscore,first refer to the syntaxtreein
Fig. 1. This syntaxtree is decomposednto a numberof phraselevds (L1 ... Lg), each
phraselevel being a setof terminal or nonterminalsymbolsthat correspondgo a sentential
form of the sentence The phraselevels shown here correspondio a canonicalderivation
sequenceahat is producedby a generalzed LR bottom-upparsingalgorithm. Let L; be the
i-th phraselevel. Thena transitionfrom phraselevel L;+1 to phraselevel L; correspondgo
a derivationof a nonterminalat time t;. On the otherhand,transitionfrom L; to Lj+; would
be equivalentto a reductionat t;.

A ACTION
A? Reduce Shift
L8 -{A 4
B C L7-{B, C } C
I5-{B E, C4}
o B s C b
D E F G I4-{B Cs, Ca}

3-{D, E C3 Ca}
I2-{D, C2 Cs C4}

L1={C1, C2, C3 C4
Ci1 C2 C3 C4 { ’ ’ } s (| v

tl 5

Fig. 1. Decomposition of a syntax tree into phrase levels for score computation
in bottom-up GLR parsing

After the syntaxtreeis decomposethto phrasdevels,we canexpresghe syntacticscore
in termsof thesephraselevels. For example the syntacticscoreof the syntaxtreein Fig. 1
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can be formulatedas the following conditional probability:

SCOREy, (Syna)
= P(Ls Ly Lo|Ly)
— P(Ls/ L. Ly. L) x P(L+ L. Ly) % ... x P(LyLy)
~ P(Lg L7)x P(L7 Lg) % ...x P(Ly Ly)

(2)

Note that the producttermsin the last formula correspondto the sequenceof rightmost
derivationin a GLR parserwith left and right contextstakeninto account Therefore,such
formulation is especialy useful for generalied LR parsing algorithm in which context-
sensitiveprocessingpower is desirable.

To evaluatethe transitionprobability betweerntwo phrasdevels,say P (L; Lg), we can
evaluatethe productof probabilitiesof two events. The first probability correspondgo the
eventthat{F, G} arethe constituentdo be reducedandthe secondprobability corresponds
to the eventthat they are reducedto C; both eventsare evaluaéd underthe contextof {B,
F, G}. The transition probability can thus be expresseds:

P(L; Lg)=P(F,Garereduced inputis {B,F G})
x P(C « FG | F,G are reduced; input is {B.F,G})

To simplify the evaluationwe canapproximatethe full context{B, F, G} with a window of
finite lengtharound{F, G}. The window sizesfor the two subeventsieednot be identicd.
According to our experimats, the first term is equalto one in mostcasesandit haslittle
contributionin discriminatingdifferentsyntaxstructures.Hence,we canignorethe first term
and approximatethe transition probability with the secondterm. The formulation can thus
be expresseds:

SCORE,y, ~ P({A} {I1.B.C.r:}) x P({C} {ls. F.G.r¢}) x ... x P({D} {h.c1.m1})

wherel; andr; are the left and right contextsof the symbolsto be reduced. The degree
of context-sensitivityis specfied by the numberof contextsymbolsto be consulted. This
numberis called the order of context-sensitivityof the scorefunction. If the orderof context-
sensitivity for left andright contextsare m and n respectivéy, it is saidto operatein LmRn
mode. For example Eq. (2) canbe furtherreducedo the following equationwhenoperating
in L1R1 mode:

SCOREgy, (Syna)

~ P({A} {0.B.C.0}) x P({C} {B.F.G.0}) x ... x P({D} {0.c1.c2)) ®)

where“ (" is the null symbol. In this case,only oneimmediatecontextsymbol, eitherto the
left or to the right of the reducedsymbols,is consulted.

Many systemshavetried to adoptLORO mode of operationin probabilistic parsing. A
probability is assignedo eachproductionrule. The scoreis then computedas the product
of theseprobabilities. However, evenif the languagecan be representé by a context-free
grammar,it doesnot meanthat its rules are usedin context-free(statisticallyindependent)
manner;the LORO modelis valid only whenthe adoptionof eachrule is independentf the
precedinguseof the otherrules. As aresult,whenthe contextualinformationof the language
becomegnore and moreimportant,this operationmodewill becomelessfeasible. Although
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the context-sensitivenodelin Eq. (2) providesthe capabilty to dealwith intra-level context-
sensitivity it fails to catd inter-level correlation In practiee, theevents{L , ... Lg} in EqQ. (2)

shouldbe jointly consideredinsteadof beingdecomposedhto seventermsthatareassumed
to be independent.Otherwise,a syntaxtree with more nodes(i.e. morelevels)will be less
likely to gethigh scorebecausehe multiplication of the large numberof probabilitiestendsto

reduceits score.However,the paramete spacewill betoo largeif we jointly considermany
phraselevels. An alternativeto relieve sucha normalizdion problemis to compactmultiple

highly correlatel phraselevelsin evaluatng the scoreasformulatedin the next section.

2.5. Syntactic Score in Run-Time Model

The formulationfor syntacticscorecomputationin Eq. (2) and(3) cantake placewhen
the parseris executng a reduceaction. We shall now showanotheralternaive in which the
computationtakesplace when a shift actionis exeated.

In GLR parsing,we may wish the computationof scoresto occurafter an input word is
just fetched. This is often the casein parallel parsingalgorithms(suchas paralleltruncation
algorithmandTomita’s algorithm)wherea numberof pathsarecomparedasedon the partial
cumulativescoresof the sameinput subsentencéor more exactly, basedon the sameprefix).

This canbe doneby compactingmultiple reduceactionsanda single shift into one step
and formulate the syntacticscore SCOREy(Syrn) as follows.

SCOREgy, (Syna)
= P(Ls Ly Lo|Ly)
= P(Ls Ly Le L5 Ly Li)x P(Ls Ly L3 Li)x P(LyL3 Ly Ly)x P(LyLy) (4)
~ P(Ls L7 Lg Ls) x P(Ls Ly) x P (Ly Ly Ly) x P(Ly/Ly)
~ P(Ls|Ls) x P(Ls L) x P(Ls Ly) x P(Ls L1)

The probability entriesin the last simplified formula correspondo a sequencef changein

the stackcontentsbetweentwo shifts. In fact, the stack contentsimmedidely after ¢;, cp,

3, ¢4 and$ (the end-of-sentenceymbol) are pushedonto the stackare{c1, (cp, C3, Cs4, $)},

{D, c, (c3, 4, B)}, {B, c3, (C4, B)}, {B, F, cs, ($)} and{A, $, ()}, which arethe prefix of
L1, L2, L4, L5 andL8, respectively.(The terminalsymbolsin the parenthesearethe input
symbolsnot yet fetched) Suchformulation makesrun-time scorecomputationan easytask
becausave can simply monitor the statusof the stackand computethe probability entries
step-by-stepafter an input word is shifted.

Two assumptiongvere madein formulating Eq. (2) — (4). First, it is assumedhat the
formationof phrasdeveli is only dependenbn its immedide lower phrasdevel, sincemost
information percolatedfrom other lower levels is containel in that level. And second,a
reductionor derivaton is only locally contextsensitiveto its immediateleft or right context
at eachphraselevel. This assumptions also supportedn other systemsaswell [Marc 80,
Gars 87].

2.6. Brief Summary

From the previoussectionsi,it is easyto seethat the whole scoringmechanisnconsists
of three main components

1. A scoe functionwhich definesthe preferene measureof a given interpretdion.
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2. Different types of decompositiorschemeswvhich apply the score function to different
driving mechanismsr algorithmsin different mode.

3. A simplification schemeto simplify the computationfor each decompositionscheme,
which also determnesthe order of context-sensitivity.

We haveintroducedonly two decompositiorschemesn the previoussections.The versatility
of this scoring mechanismhowever,is beyondwhat we have describedhere. For more
information about other formulations and the comparisonto other probabilistic modelsin
the wide variety of linguistic levels, interestedreaderscanrefer to [Su 91] for more formal
description.

With sucha scorefunction, we canachiese arbitrary degreeof context-sensitivgparsing
capabilty (in probabilistic sense)with a context-freegrammar. Such extensionis quite
different from other trainable gramnar like [Bake 79], where N-gram paradigmis used
to train a context-freegrammarwith restricted(andhenceunnatural)right handsidesymbols.
Under our scorefunction paradigm,the grammarrules can be any augmenteccontext-fre
grammarwritten by linguists and the contextualinformation is embeddedn the statistic
knowledgeof the scorefunction (and other augmenton not mentionedhere). The score
function thus integratedinguistic reality and statisticknowledgein an elegantway.

A simulationbasedsolely on the syntacticscoe was conductedandreportedin [Su 88a]
with a full-path searchingalgorithm. The result showsthat the correctsyntacticstructures
of over 85% of the testsentencesvere successfullyrankedat the first placewhena total of
3 local left andright contextsymbolswere consulted.In addition, over 93% of the correct
syntaxtreesarerankedat the first or secondplacebasedon the syntacticscorewith 2 context
symbols. With semanticscore incorporatedinto the mechanismthe resultsshouldbe even
more promising.

3. The Sequential Truncation Algorithm

3.1. Basic Algorithm

Using the score function definedin the previoussection,we will presentthe idea of
sequentiatruncationalgorithm with Fig. 2.
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shift
. /r\educe shift
shift , feduoe  —
/ reguce shift shift
reduce
> ( shift shift
Teduce reducer lﬁce it
\ shift N
L shift
redu\cere(ﬂce shift
word 1 waord 2 word 3

Fig. 2 The searching tree

Eachpathin Fig. 2 correspondso a possiblederivationof a given sentence The parser
will traversethe searchingreewith the depth-firststrategy.But duringthe searchingprocess,
the parsercomparesthe accumulatd running scoreof ead path with a running threshold
constantC(a;) at eachstepi whenthe i-th word is fetched. If the scoreof the pathis less
than the running thresholdC(«;), it will be truncatel, i.e. blocked, and the next path will
be tried. This processcontinuesuntil we get the completeparsetree. The fraction of paths
to be blocked at eachstepis determinedby the control variable o; which will be defined
later in the next section.

After we obtainthe first completeparsetree, a lower boundfor the scores,initially set
to the scoreof thefirst parsetree,is alsoacquiral. The parsemwill continueto traverseother
paths,but from now on, the scoreof eachpathwill alsobe comparedwith the currentlow
boundfor the scoresin additionto be comparedwith the runningthreshold. This additional
comparisonis similar to the branchand bound strategyemployedin Al applicatons [Wins
84] andit will aceleratethe parsingprocesdurther. If the testfails in eithercase this path
will be truncatel. Continuingin this manner,we will updatethe lower boundwhenevera
new completeparsetree hasa scorehigherthan currentlower bound,and repeatthe whole
processuntil the end of the entire searchingprocess. The whole processis shownin the
flow chartin Fig. 3.
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o—]

traverse to next step
using depth-first search
path
completed
calculate the accumulated !
unning score
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- ulated score of cktrack to
compare the score with acum cther nath
the running threshold the lower bound another pat 9@

output the parse tree

replace the score of
the lower bound
with the score of
current path

Fig.3 Flow chart for sequential truncation parsing algorithm

Whenall the pathsareblockedwithout arriving at any completeparsetree,we canadopt
one of two possiblestrategies.First, we could loosenthe running thresholdsj.e. lowering
C(«j), andtry the deepespath goneso far again. Second,we can processthis sentencen
fail-soft mode. The fail-soft mechanismwill skip and discardthe currentstateand attempt
to continuethe parsingat somelater point.

As we can see, the score of eachsyntax tree can be expressedas the product of a
sequenceof conditional probabilities suchas the one shownin Eq. (4). Eachtermin the
productcorresponddo a transitionbetweentwo shift actionsandis evaluate immedidaely
after a shift. To avoid mathemécal underflow,we shall take the logarithm on both sidesof
Eg. (4) to get a logarithmic scorein the form of :

L
log (SCORE,y, (Syn)) = Y _log P (X X;) (5)
1=1

wherel is the length of the sentenceX; denotesthe setof phraselevels which have been
encounteredip to the i-th shift, and X'; is the complementf X;, namelythe setof phrase
levels not yet encounterd up to the i-th shift.

3.2. Analytic Description
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The effectivenessof the sequentialtruncaton algorithmis closely relaied to the distri-
bution of scoresof the databaseand the distribution of scoresof the input sentences.This
phenomenorwill be illustratedin the following paragraphs.

J
If we definey; = 3" log P (X X;), theny; is the accumuléed logarithmicscoreup to
i=1
the j-th word, which is alsothe accumulagd scoreafter the j-th shift of the sentence.

Supposewe have M sentencesvith their correctparsetreesin the databae. For each
parsetree, we can evalude y; by using the logarithmic scorefunction defined in Eq. (5).
So for the k-th sentencein the databaseyve obtain a sequenceyf. y5. ..y}, , wherey!
is the accumulged logarithmic scoreof the k-th sentenceup to the j-th step,and Ly is the
length of the k-th sentence.

Given theseaccumulate scoresfound in the databasewe can definea setof random
variablesY; correspondingo yf with k rangedfrom 1 to M. In other words, Y; is the
randomvariablecorrespondindo the accumuléive logarithmic scoresup to thei-th word of
the sentencesn the database Using the samplesin the databasewe candraw a histogram
for eachY; andapproximatesachhistogramby a continuousdensityfunction fg'/ (y).

To allow afractionaj, say99%, of the bestparsetreesin the databaeto passhethreshold
testat stepi, we canseta constantC(«;) suchthat P (Y; > C («;)) = a;, whereC(q;) is the
runningthresholdthatwe will useto comparewith therunningaccumuléedlogarithmicscore
at stepi. Thosepathswith running accumul#ed logarithmic scorey; lessthan C(a;) would

be blockedat the i-th step. Using the notationdefinedabove,the probability of obtainingthe
Ly
desiredparsetree for a sentencewith length Ly would be [] «;.

1=1

For the input sentencedo be parsed,we can also define a set of randomvariables Z;
correspondindo the distribution of the accumul&ed logarithmic scoresat the i-th stepanda
setof densityfunction f} (z) associateavith Z;. Theseprobability entrieswould be evaluated
from the ambiguoudreesof the input sentencesFig. 4 showsthe relationshipbetweenthe
probability density function f4 (=) (the distribution of the i-th running score of the input
tex) andthe probability densityfunction f; (y) (the distribution of cumulativescoreof the
database In the figure, the dashedines indicate the meansof the two density functions.
Sincethe step-wisecumulative scoresin the databasere evaluatéel using the correctparse
treesin the databasewe would expectthat the expecation of Y; is greaterthan that of Z;
and the varianceof Y; is lessthanthat of Z;. In otherwords, we have E[Y;] > E[Z;] and
Var[Y;]<Var[Z] in normal situation.
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Fig. 4 Relationship between the running soare of the input text
and the cummulative score of the database

Let i denote F%, (C (qa;)), where FJ, (z) is the cumulateddistribution function of Z;,
then j; is the probability thata pathwill betruncatel atthei-th stepof the searchingorocess.
By usingthis sequentiatruncationmethod,the searchingspacewould thenbe approximately

L

reducedto_ﬁ (1 — 3;), which is a small portion of the original searchingspacegenerated

by a full platlh searchingalgorithm. Thereforethe efficiency of parsingis increased. Since

Bi in Fig. 4ais lessthanthatin Fig. 4b, which correspondto the situation that has a

large expectéion difference(E[Y;]-E[Zi]) and a small varianceratio (Var[Y;]/Var[Z]), the

underlyinggrammarthat hasthe propertyof Fig. 4b would benefitmostfrom this algorithm.

In addition,we canseethatif we increasethe runningthresholdC(a;), we will geta greater
I

Bi anda lower «j. The parsingefficiency will thusincrease put the probability (i.e. ﬁ a;)

1=1
thatwe will getthe desiredparsetreewould decreae. How to selecta goodC(a;) to achieve
a desiredsuccesgate is thus very important. In the following section,this issuewould be
discussedn greaterdetails.

4. How To Set The Running Threshold

4.1. Static Running Threshold
Usingthemodelgivenin thelastsectionthe probabilitythatwe will gettheglobaloptimal
L
solution,i.e. the parsetreewith the largestscore,for a sentenceof lengthL is K; = 1‘[ ag,

=1
where K| is a constantpre-selectd by the systemdesigneras a compromisebetwéenthe
parsingefficieny andthe translationquality. Assuming thatthe averagebranchingfactor for
eachpathis a constantN, thenthe averagetotal numberof pathswe haveto try is :

glar.ap) =N+ N+(1=F1)« N+ N*(1—=051)+«Nx*(1—05)* N+ ..
=N+ (1+Nxh(ar)+ N sh(ar)*h(ay)+..)

-1 i (6)
= N x* 1—|—ZN' *Hh(njj
i=1 j=1
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whereh (a;) = (1 — ). In orderto minimize the path number,we musthaveh (o) <
h(az) < ... < h(ar) becauséh(aj) hasmore significantinfluenceon the numberof paths
to be truncatedthan h(aij+1).

The problemof selectingan appropriaterunning thresholdC(a;) is now convertedinto
L

oneof minimizing ¢ (a4...a1 ) underthe constraintof || «; = K. Takingthe logarithmon
i=1
I
both sides,we get > log a; = log K. Thenthe Lagrangemultiplier \ is introducedto

1=1
L

getg* (a1 .ar) =g (a1 ar)+ A Z log «;. Takingthe partial derivativeof ¢* with respect

. =1 .
to a1...a, we will getthe following simultaneousequations:

L

a *
agl =0, and ;log a; = log K7, (7)

dg* dg*

=0, =0,
6(7] 6@2

In the aboveequationsthereare (L+1) variables, which are a1...a, and )\, and (L+1)
equations.So, a1...a canbe solvedby a numericalmethod. Since«; is usually very close
to 1, we can linearize the function h(«j) in the region aroundaj=1 and approximateit by
h(a;) =~ a* a; + b. In this way, we cansubstituteh(a;) in the aboveequationby a * a; + b
to simplify the calculdion.

During our derivaton, we haveassumedhatthe averagebranchingfactor at eachstageis
a constantN. This constraintcanbe relaxedby assuminghe averagebranchingfactor at the
i-th stageto be N;. In this way, we will geta more complicaed expressiorfor g (ay...a1),
but it can still be solvedin the sameway.

The runningthresholdC(a;) cannow be computedoff-line by selectingdifferentK, for
differentsentencéengthL. We will call this setof C(«i) the static runningthreshold because
oncethey are computed they will not be changedduring the parsingprocess.

4.2. Dynamic Running Threshold

The static thresholdderivedin the abovesectioncan serveas a limiting factor in the
truncationalgorithm. However,if we arrive at a completeparsetree with much higherfinal
accumulged running scorethan the final accumulagéd running threshold,then the running
thresholdshould be adjustedto refled the higher final accumul#ed running score. Such
adjustmenis necessarpecausevenif a pathcanpassall the thresholdtestsit might still be
discardedvhencomparedvith the muchhigherfinal accumulagdrunningscore. Therefore it
would bebetterif the runningthresholds changedo C'(aj)=C(ai)+AC(ai), where AC(qj) is
setto v (y; — C (a;)), 0<y<1, andy; is theacamulatedscoreof the currentbestparsetree
atthei-th step. The tunningconstanty is anothercontrol variablepre-seleted by the system
designer.SinceC'(«;) is adjusteddynamicaly it will be calledthe dynamicrunningthreshold.
Using the dynamicrunningthreshold the efficiency of parsingwould be furtherimproved.

If it sohappenthatall pathsare blockedbeforea completeparsetreeis formed,we can
find the deepespath(assumingt to beatthej-th step)amongthe blockedonesandreactivde
it with a loweredrunningthresholdof Cl(ﬂj)zyj, WthEy} is the scoreof this pathat thej-th
step. Sincethe procedurdo lower therunningthresholds quite complicaedit mightbe more
convenienfust to invoke the fail-soft mechanisnfor sentencesvhosepathsareall blocked.
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5. Scored Truncation vs Charted Parsing

It is interestingto make a comparisorbetweenthe well-known chart mechanismWino
83] andthe truncationalgorithm. In many currentsystemsa chart-like approachis usedto
accderatethe parsingspeedby avoiding the reparsingoverheadof substructuresvhich had
beenconstructedpreviously. In the previoussections,we have demonstratedhe speedup
effects of the scoredsequentialtruncation algorithm, which acceleates parsing speedby
cutting down the searchingspacewith the aids of a good scoringfunction. Is it profitable
to combinethesetwo mechanismsnto one ? The answerseemsto be “yes” if the parsing
speedis the only concern.

Neverthelss, there is a few words to be said about the combination of thesetwo
mechanisms. When the truncation algorithm is adoptedin a chart parser, the best tree
originally selectel by a chartparsermight not appearin the treesproducedby its truncation
version. This phenomenotiies in the fact that chart mechanisn{Wino 83] is essentiallyin
conflict with the truncation mechanismin their operations. The reasonfor having chartis
to be able to retain all subtreeghat were parsedin previouspath traversal. So, when we
backtra& to the next path and arrive at the sameset of input strings,the samesubtreesan
be usedagainwithout reparsing.On the contrary,the idea behindthe truncationmechaism
is to discad a subtreewhich haslow scoreasearly as possible. Therefore if we adoptthe
truncationmechaism during chartedparsing, not every possble subtreebetweena set of
input wordswill be successfullyconstructedand storedinto the chart. For example,in Fig.
5, therearetwo possiblesubtreedetweernb andc. Whenthe pathsin block A areexpanded,
one of the subtreess discardedwhile the otheris storedinto the chart.

R, subtree (1) is better under

L1 Ry context

R,  subtree (2) is better under

L; R, context

Fig. 5. Chart with truncation mechanism

The subtreemay be discardedfor the following two reasons.First, it might be due to
the semanticconstraintson the contextualdependencyf the system. Second,the subtree
might be discardedecaiseof its smallrunningaccumulagéd score(andthustruncatel by the
truncationmechanism.)Either will leaveus a chartwith incomplee subchart.So, this might
resultin the bestpossibletree being missedas a side-efect of using this chartunderother
contextualenvironment. For instance the besttreein Fig. 5 might be constructedwith the
secondsubtree the left contextL, andthe right contextR,. But, sincethe path expansion
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startingfrom the left contextL, hasthe secondsubtreediscardedbecauseof its low score
underthe contextof L; and Ry, the besttreewill neverbe formed. Therefore with a chart
having incompletesubchartsthe possibility of obtainingthe besttree might be affected by
the pathstruncate before.

One solutionto this incompatibility problemis to mark the subchartsas being complete
or incomplete. If anincompletesubchartis encounterd again,it will be reparsed.On the
otherhand,if acompletesetof chartis encounterd, the subtreescanbe copieddirectly from
the chart. Anothersolutionis to suspendhetruncationmechanisnwhena chartis beingtried
the first time. And if subtreesare copieddirectly from the chart, the truncationmechaism
resumests normal operation.In this way, it is guaranteedhat every subchartn the chartis
complete.Both of thesesolutionswill introducesomeoverhead.This compromisehowever,
is unavoidablef the advantage®f usingchartareto be retained.

6. Testing

We have completel two preliminary testson the truncationalgorithm with two special
versionsof our English-Chines®T systemthe ARCHTRAN. Thetestsusea databasevhich
containsthe required probability entriesacquiredfrom a set of 1430 sentences.A more
extendedeston a databasef 1607 sentenceis also conducted.The following paragraphs
will describethesetestsin detail.

In the first experimet, the parsingtime neededby a chart parseris comparedwith the
time neededby the samechartparserwhich is augmentedvith truncation mechanism.The
chartparseradopteda bottom-upparsingwith top-downfiltering strategy(TD+BU for short,
see[Su 87a]). Its parsingefficiency is aboutthe sameorderas Tomita’s extendedchartparser
[Tomi 87, Su90] andit hasa meanspeed-upfactor of about43 over traditional uncharted
LR parser. From the test, we found that the averageparsingtime by the chart parserwith
truncationis improvedby a factor of about4. For somesentencesthe improvementcan go
as high as a factor of 20. This resultis encouraging.

In the secondexperiment,we convertedthe chart parserfor the first experimentinto
a chartless one. Similar test is conductedfor this chartless parserbut with a smaller
analysisgrammar.The resultshowsthat the total parsingtime for this parserwith truncation
mechanismaddedis betterthan the sameparserwithout truncationby a factor of about3.
Becausdhe unchartedoarsersarerelatively moreslowerthanthe previouschartedones,only
a few sentencesre testedwhich acount for the abovespeedupfactor.

In the previoustwo tests,the size of the test samplesis small. A more extendedtest
was conductedwith even more encouragingresults. The results,togetherwith a sentence
lengthdistributioncurve,areshownin Fig. 6. The speedugdactorsare shownin logarithmic
scale. More detailal test datais listed in the Appendix of this chapter. In the test, two
parserswere usedto show the effects of sequentialtruncation algorithm with respectto
chartedparsing The first parseris a TD+BU chart parser,which doesnot adopttruncation
algorithm. The secondparseris a truncaton-basedbottom-up(BU) parser,which doesnot
use chart mechanism. The score databasdor the secondparsercontains1607 sentences
which aredecomposedhto probability entriesin L2R1 format (thatis, 2 left contextsymbols
and 1 right lookaheadare consulted). The augmentedontext-freegrammarusedin the test
containsa setof 1046 productionrules. Undersuchtestenvironmentandtaking the sentence
length distribution into acount, the meanspeed-upfactor for a set of 165 sentencegrom
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inside the databases about17 (closetest). For anothersetof testdatawhich contains196
sentencegrom outsidethe databasdhe speed-upfactor is about9 (opentest). In general,
the speed-upfactors vary with the numberof ambiguity and the length of the sentences.
(Individual comparisorshowsspeed-ugactorsrangingfrom 1 to morethan100in bothopen
and close tests.) Neverthelessthe figure showsa tendencyof increaing speed-upfactors
with length (and hencewith structuralcomplexity) of the sentences.This tendencyis very
encouragingoecause truncationalgorithmis mostbenefical for long sentencesn which a
large numberof pathscan be cut down.

In the abovetests,only syntacticscoreand static thresholdwere used. We expectthat
more searchingspacewill be cut down and hencelarger speed-upfactorswill resultwhen
semanticscoreanddynamicrunningthresholdare incorporatednto the truncationalgorithm.
From the positive results of the above experimentswe have shown the inclusion of the
sequentialkruncationalgorithmis advantageoufor a MT system.

7. Concluding Remarks

In an operationalmachinetranslationsystemiit is importantto arrive at a good analysis
for a sentencen areasonablyshorttime Oneway to achievethis is to decreaethe parsing

Speedup Factor:Logyg (t[chart]/t [truncation]) Sentence Length Distribution
4 5%
3.5 — il ,
_-"' : g Close Test ———— -4
3 | :5 '-,'. Open Test — — — —
.': "!',
2.5 — :
: P Close Test -3
_ Speedup

L Factor

1.5 —
1
Sentence Length Distribution 1
_ (Total : 13565 Sentences) B
0.5 —
Open Test '-"..____
Speedup Factor -
0 | | | | | 0
0 10 20 30 40 50 60

Sentence Length (words)

Fig. 6 Comparison of the speed of truncation parser and chart parser
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time by reducingthe searchingspace. We have proposeda sequentialtruncation algorithm
with a scoe functionto achievethis goal. Thereareseverakeasondgor adoptingthis strategy.
First, the first parsetree with a moderatequality can be found quickly and easily. Second,
the runningthresholdservesto truncatepart of the pathsthatis quite unlikely to leadto the
bestanalysis,and thus greatly reducesthe searchingspace.

The optimality propertyof the scorefunction hasbeendescribedn this chapter. Some
possibledecompositionschemedor tailoring this function to a GLR parserare also intro-
duced. In particula, we have shown how to model the stratified analysisparadigmwith
the scorefunction, and demonstratedhe versatility of the scorefunction by introducingtwo
decompositionschemesaboutthe syntacticscore.

In the sequentiatruncationstrategy,a sequencef runningthresholdsare usedto bound
the searchingspaceduring eachstepof the scoredparsingprocess.Additional speedupcan
be acquiredby a branch-and-boundtrategyif the accumuléed scorefor a parseis lower than
a dynamically adjustedlower bound.

We have pointed out the incompatibilty problem betweenthe use of chart and the
truncation mechanism. As our currentresearchtopic, we shall resolvethe incompatibility
problembetweenthe chartmechanismandthe truncationalgorithm,andinclude the solution
into our working MT system,the ARCHTRAN.

We have madea pilot teston the truncationmechansm with a chart parserthat adopts
bottom-upparsingwith top-downfiltering strategy. With a databae of 1430 sentencesthe
result indicates an averageimprovementin the parsingtime by a factor of 4 (for some
sentenceghe improvementgoesas high as a factor of 20). In anotherpilot test on the
truncationmechanismthe parsingtime is testedfor a chartless parserthat adoptssequential
parsing strategy. The result showsan improvementin parsingtime by a factor of 3 for
the inclusion of the truncationmechanism. Theseencouragingesultsdemonstratea great
promisefor the sequentiakruncationstrategy. In anotherextendedtest, we have achieved
meanspeed-ugdactorsof 9 and17 for opentestandclosetest,respectively.This resultshows
a greatimprovementof the sequentiatruncationalgorithm over conventionalchart parserif
a good scorefunction is available
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9. Appendix : Open Test and Close Test

The following tablesshowthe resultsof the openandclosetestsdescribedn the chapter
(seealso Fig. 6). The environmentunderwhich the testswere conductedis summarized
as follows :

* Parser#l : [-Truncation][+Chart] [TD+BU]

o Parser#2 : [+Truncation][-Chart] [BU] (Bottom Up)
* ScoreDataBase: 1607 sentencegL2R1)

e Grammar: 1046 productionrules

* OpenTest: 196 sentencegexecutd at SUN-4/260)
* CloseTest: 165 sentencegexecute at SUN-4/110)
* Mean Speed-Up. OpenTest=9 & CloseTest= 17

CLOSE TEST
Length No. of Test Speed-Up
1stParser 2nd Parser
(words) Sentence Total CPU Time | Total CPU Time (1st/ 2nd)
(sec) (sec)
3 2 2.85 1.09 2.61
4 2 5.81 2.92 1.99
5 2 2.63 1.37 1.92
6 2 31.62 6.12 5.17
7 2 33.99 2.77 12.27
8 2 19.60 5.38 3.64
9 2 15.31 7.80 1.96
10 5 175.86 39.50 4.45
11 5 518.89 56.93 9.11
12 4 387.64 40.74 9.51
13 3 448.02 36.33 12.33
14 5 3647.54 86.29 42.27
15 3 143.51 125.65 1.14
16 6 300.34 175.57 1.71
17 11 1950.57 237.51 8.21
18 12 16901.77 360.53 46.88
19 13 4882.46 448.87 10.88
20 18 13148.05 785.17 16.75
21 14 11560.29 957.19 12.08
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22 12 7624.84 560.50 13.60
23 9 33879.85 801.12 42.29
24 6 6377.89 292.22 21.83
25 2 407.79 138.53 2.94
26 3 1534.79 97.97 15.67
27 3 8949.71 370.90 24.13
28 2 6651.16 86.40 76.98
29 3 4236.36 135.33 31.30
30 3 2444.76 83.89 29.14
31 2 1749.56 63.50 27.55
32 2 2881.16 140.11 20.56
33 2 8471.91 75.48 112.24
34 2 15669.64 161.78 96.86
36 1 2533.35 46.48 54.50
TOTAL 165 157589.52 6431.94 24.50
MEAN (take sentencdength distributioninto account) 17.22
OPEN TEST
Length No. of Test Speed-Up
1stParser 2nd Parser
(words) Sentence Total CPU Time | Total CPU Time (1st/ 2nd)
(sec) (sec)
3 4 3.70 1.76 2.10
4 5 7.29 1.50 4.86
5 5 6.31 3.99 1.58
6 5 61.88 4.73 13.08
7 9 39.12 16.62 2.35
8 10 79.52 27.17 2.93
9 10 315.52 67.75 4.66
10 10 266.15 73.72 3.61
11 9 377.72 36.81 10.26
12 9 154.69 81.72 1.89
13 10 359.94 128.87 2.79
14 9 2779.25 126.72 21.93
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15 8 179.15 137.21 1.31
16 9 587.23 198.93 2.95
17 8 2121.77 358.72 5.91
18 9 5391.85 328.23 16.43
19 10 1814.09 385.68 4.70
20 11 4888.94 807.30 6.06
21 14 8916.45 1217.73 7.32
22 8 1104.86 406.98 2.71
23 4 1238.93 162.71 7.61
24 4 2249.22 268.99 8.36
25 3 1905.49 90.29 21.10
26 4 10292.94 563.95 18.25
27 2 8759.70 83.29 105.17
28 1 677.92 22.07 30.72
29 6 5969.74 209.76 28.46
TOTAL 196 60549.37 5813.20 10.42
MEAN (take sentencdengthdistributioninto account) 9.07
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