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Abstract

In a Chinese sentence, there are no word delimiters, like white spaces, between the “words”.

Therefore, it is important to identify the word boundaries before any processing can proceed. The

same is also true for other languages like Japanese. Traditional heuristic approaches tend to use

dictionary lookup, morphological rules and heuristics, such as matching the longest matchable

dictionary entry, for forming the words. Such approaches may not be applied to a large system

due to the complicated linguistic phenomena involved in Chinese morphology and syntax.

In this paper, the various available features in a sentence are used to construct a generalized

word segmentation formula; the various probabilistic models for word segmentation are then

derived based on the generalized word segmentation model. In general, the likelihood measure

adopted in a probabilistic model does not provide a scoring mechanism that directly indicates

the real ranks of the various candidate segmentation patterns. To enhance the baseline models,

the parameters of the models are further adjusted with an adaptive and robust learning algorithm.

The simulation shows that cost-effective word segmentation could be achieved under various

contexts with the proposed models. By incorporating word length information to a simple

context-independent word model and applying a robust adaptive learning algorithm to the

segmentation problem, it is possible to achieve accuracy in word recognition rate of 99.39%

and sentence recognition rate of 97.65% in the test corpus.

Furthermore, the assumption that all lexical entries could be found in the system dictionary

is usually not true in real applications. Thus such an “unknown word problem” is examined for

1



each word segmentation model used here. Some prospective guidelines to the unknown word

problem will be suggested.

1. Introduction

Most tasks in natural language processing, such as machine translation or spoken language

processing, takewords as the smallest meaningful units. However, there are no obvious

delimiter markers between Chinese words except for some punctuation marks. Therefore, word

segmentation is essential in almost all Chinese language processing tasks.

Since a Chinese sentence consists of a string of Chinese characters, word segmentation could

be regarded as a process of assigning each character in the input sentence to a word so as to

form a sequence of words. Unfortunately, an input sentence can usually be segmented into more

than one segmentation patterns. For example, a Chinese sentence like:

may have the following segmentation patterns based on simple dictionary lookup:

1.+

2.*

3.*

4.*

TO MS. FANG, those who decide to BE A STATESMAN never succeed and become famous.

TO MS. FANG, those who decide to HOLD POWER and MANAGE A HOUSEHOLD never ...

To the LADY of the COUNTER PARTY, those who decide to HOLD POWER and MANAGE A HOUSEHOLD never ...

To the LADY of the COUNTER PARTY, those who decide to BE A STATESMAN never ...

.
.

.

where the first segmentation pattern is the preferred one.

2



To find the correct segmentation pattern, it is necessary to use other information sources

instead of simple dictionary lookup. The main issue for dealing with the word segmentation

problem is how to find out the correct segmentation from all possible ones.

There are several technical reasons that make the word segmentation problem nontrivial.

First, the Chinese characters can be combined rather freely to form legal words. As such,

ambiguous segmentation patterns may not be resolved by using simple dictionary lookup.

Second, a Chinese text contains not only words but also inflectional or derivational mor-

phemes, tense markers, aspect markers, and so on. Because such morphemes and markers may be

combined with adjacent characters to form legal words, it is hard to deal with such ambiguities

with simple morphological analysis.

Third, unknown words may appear in the input text. This fact may make many word

segmentation models work badly in real applications, because most segmentation algorithms

today assume that all words in the input text could be found in the system dictionary.

To resolve these problems, various knowledge sources might have to be consulted. However,

extensive use of high level knowledge and analysis may requires extremely high computation

cost. Hence, segmentation algorithms that make use of discriminative features are desirable.

In the past, two different methodologies were used for word segmentation. They are rule-

based approaches (Chen [3], Ho [6], Yeh [9]) and statistical ones (Chang [2], Fan [5], Sproat [7]).

It is less favorable to use a rule-based approach in large scale applications since 1) it is costly

to construct lexical or morphological rules by hand, 2) no objective preference can be given for

ambiguous segmentation patterns, and 3) it is difficult to maintain rule consistency as the size of

the rule base increases. On the contrary, as data are jointly considered in a statistical framework,

statistical approaches usually do not suffer from the consistency problem. Therefore, statistical

approaches are usually more practical in a large application like machine translation. However,

the current statistical approaches usually use the maximum likelihood measure to evaluate the

preference of a particular segmentation pattern without regard to the discrimination power of

such models. As a result, when the baseline models introduce errors, heuristic approaches, such

as adding special information to the dictionary or resorting to later syntactic or semantic analyses
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are suggested (Chang [2]) to remedy the modeling and estimation errors. Such approaches not

only destroy the uniformity of the statistical methods but also make maintenance difficult.

To resolve the above problems, several probabilistic models are proposed in this paper

based on a generalized word segmentation model. The focus is to derive different formulations

under different constraints of the available resources. In particular, features that could be

acquired inexpensively will be used for cost-effective word segmentation. The performance

of the proposed statistical approaches will be evaluated based on a Chinese corpus.

In order to adapt the probabilistic models to reflect the real ranks of the candidate seg-

mentation patterns and to suppress statistical variations among different application domains, a

discrimination and robustness oriented adaptive learning algorithm (Su [8]) is applied to enhance

the performance. Moreover, the unknown word problem will be addressed and examined against

the proposed models. Also, some general guidelines to this problem will be suggested.

2. Word Segmentation Models

2.1 A Generalized Word Segmentation Model

For an input sentence with n Chinese characters c1; c2; � � � ; cn (represented as cn
1

hereafter),

it might have several different ways of segmentation according to the system dictionary. The goal

of word segmentation is to find the most probable segmentation pattern for the given character

string, since a segmentation pattern can be identified uniquely with the sequence of words of the

segmented sentence. The goal is equivalent to finding a word sequence

Ŵ � argmax
Wi

P (Wi j c
n

1
) (2.1.1)

with the largest segmentation score P

�
Wi j c

n

1

�
. In this formula, argmax

Wi

P (�) refers to

the argument, among all possible Wi’s, that maximizes the probabilistic function P (�), and

Wi � w
i;mi

i;1
= wi;1; wi;2; � � � ; wi;mi

denotes the i-th possible word sequence of length mi,

whose j-th element is wi;j .

In general, we could formulate the segmentation score by involving whatever features that

are considered significant or available, subject only to the constraints of the complexity of the
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model and the number of parameters that need to be trained. In particular, we would like to

use the segmented words (Wi), the word length information (Li), the number of characters (n)

in the input sentence, and the number of words (mi) for the i-th segmentation pattern as the

features for word segmentation. (Li � l
i;m

i;1
= li;1; li;2; � � � ; li;mi

refers to the i-th sequence of

word lengths, where li;j denotes the length of the j-th word in the i-th word sequence.) These

features are either related to the character strings directly or could be acquired inexpensively.

Thus, they are adopted in the current task. With these features, we can identify a “segmentation

pattern” uniquely with the (Wi; Li;mi) triple, and the goal of word segmentation would become

to find the word segmentation pattern corresponding to

argmax
i

P (Wi; Li;mi j c
n

1
; n) (2.1.2)

Hence, we could define the generalized segmentation score as:

P (Wi; Li;mi j c
n

1
; n) (2.1.3)

Note that the variables, such as Wi and Li, are not independent. Technically, however, these

features are integrated in a single formula so that all models that are computationally feasible

could be derived from this general formula; unavailable features will simply be ignored when

deriving a particular model.

The generalized segmentation score formula can be estimated in several different ways

depending on the available information and resources, which results in several models. In

the following section, we will give a more detailed derivation of a particular model that take

advantage of the segmented words and the word length information. Other simplified models

can be derived in much the same way. So they are simply listed without proof.

2.2 Computational Models For Word Segmentation

Assume that a segmented text corpus is available, then we can use the frequency information

of the words and their lengths (in characters) for segmentation. The corresponding segmentation

score for the i-th segmentation pattern will be:

5



P (Li;Wi;mi j c
n

1
; n)

= P

�
l
i;mi

i;1
; w

i;mi

i;1
;mi j c

n

1
; n

�

� Pi (l
m

1
; w

m

1
;m j c

n

1
; n)

= Pi (l
m

1
; w

m

1
j m; c

n

1
; n)� Pi (m j c

n

1
; n)

=

miY

k=1

Pi

�
lk; wk j l

k�1
1

; w

k�1
1

;m; c

n
1 ; n

�
� Pi (m j c

n
1 ; n)

=
Y
k

Pi

�
lk j wk; l

k�1
1

; w

k�1
1

; � � � ; n

�
� Pi

�
wk j l

k�1
1

; w

k�1
1

; � � � ; n

�
� Pi (m j c

n
1 ; n)

(2.2.4)

For notational simplicity, Pi (�) is used specifically to denote the probability for the i-th

segmentation pattern, and all the respective i indices are dropped from the equation. The

multiplication theory for probability: P (a; b j c) = P (a j b; c)� P (b j c), is applied repeatedly

in the derivation, which results in the product terms, indexed by k, in the last two formulae.

Since lk is unique once wk is given, we have P (lk j wk; � � �) = 1 for the first term in

the equation. If we assume that the k-th word depends only on the length lk�1 of the previous

word, the second term in the last formula can be approximated as P
�
wk j l

k�1
1

; w

k�1
1

; � � � ; n

�
�

P (wk j lk�1). Furthermore, if we assume that the number of words mi depends only on the

length of the sentence n, then we have Pi

�
m j c

n
1
; n

�
� Pi (m j n). With these assumptions,

the segmentation problem is equivalent to finding:

argmax
i

P (Wi; Li;mi j c
n
1 ; n)

� argmax
i

Y
k

Pi (wk j lk�1)� Pi (m j n)

= argmax
i

X
k

logPi (wk j lk�1) + logPi (m j n)

(2.2.5)

where log (�) refers to a logarithmic function. (The log-scaled probabilities are used simply to

reduce the computation time and avoid mathematical underflow.) There are several variants

of the above equation, depending on different assumptions made in deriving the segmentation

score. First, it is possible to drop the term Pi (m j n) or
P

logPi (wk j lk�1), depending on
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what information is available, in the previous derivation steps. Alternatively, we can also assume

that the word wk does not depend on the length of the preceding word length lk�1, and thus use

Pi (wk) instead of Pi (wk j lk�1) in the formula. By changing the roles of wk and lk in the last

step of derivation, we can use the transition probability Pi (lk j lk�1) instead of Pi (wk j lk�1)

in the segmentation score. Therefore, the above formula along with its variants constitute a

family of segmentation scores as shown below:

argmax
i

P (Wi; Li;mi j c
n
1 ; n)

� argmax
i

8>>>>>>>><
>>>>>>>>:

miP
k=1

logPi (wk) (M1)

miP
k=1

logPi (lk j lk�1) (M2)

logPi (m j n) (M3)
miP
k=1

logPi (wk j lk�1) (M4)

(2.2.6)

Model M1 is a context-independent word model. It assumes that all words are independent

of the other contextual information. Such a model is used in Chang [2] for the segmentation task.

Model M2 uses the word length information only in determining the word segmentation

patterns. Model M3, on the other hand, uses the number of characters and the number of words

in a sentence as the features for segmentation. It seems that such features have nothing to do with

the characteristics of Chinese words. However, as can be seen in Chang [2] and other literatures,

most Chinese words are double-character words, single-character words and tri-character words;

more than 99% of Chinese words fall within 4 characters. Hence, it is possible to make guesses

based on word length information.

Moreover, the length information could be acquired without much extra cost when preparing

a segmented corpus. Therefore, such features could provide an inexpensive way for word

segmentation in some applications where a large dictionary is not available or expensive to

acquire. In fact, as will be seen in the performance evaluation section, the performance of such

formulations are comparable with others. So it could be used, for instance, to bootstrap the
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automatic construction process of an electronic dictionary, where there is not a large dictionary

initially.

Model M4 uses both word sequence and word length information for segmentation. If the

word length information is ignored, this model reduces to M1. By using the extra word length

information, which can be acquired from the same corpus for training model M1, this model

can make use of more information and the performance is expected to be better if the training

corpus is large enough to provide reliable estimation of the model parameters.

If the input sentences are annotated with lexical tags (i.e., parts of speech) Ti;j �

ti;j;1; � � � ; ti;j;mi
and such information is used in segmentation, then it is possible to use such

information to give a modified segmentation score to each segmentation pattern. (The notation

ti;j;k stands for the k-th possible part of speech corresponding to the j-th word in the i-th seg-

mentation pattern.) One can achieve the same optimization criteria as that of the generalized

segmentation score by noting that:

argmax
i

P (Wi; Li;mi j c
n
1 ; n)

= argmax
i

X
all Ti;j

P

�
Wi; Li; Ti;j ;mi j c

n
1 ; n

�

� argmax
i

"
max
all Ti;j

P

�
Wi; Li; Ti;j ;mi j c

n
1 ; n

�#
:

(2.2.7)

The last formula means to find the tag sequence Ti;j with the largest score as defined by

P

�
Wi; Li; Ti;j ;mi j c

n
1 ; n

�
(2.2.8)

for each possible segmentation pattern. Then select the segmentation pattern with the highest

maximum score as the preferred segmentation pattern.

By following the same procedures as in Eq. (2.2.4) and making some assumptions, it is not

difficult to find that the following word segmentation models could be used when the lexical

tag information is available:
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argmax
i

P (Wi; Li;mi j c
n
1 ; n)

� argmax
i

8>>>><
>>>>:

max
Ti;j

miP
k=1

logPij (tk j tk�1) (M5)

max
Ti;j

P
k

logPij (wk j lk�1) +
P
k

logPij (tk j tk�1) (M6)

max
Ti;j

P
k

logPij (wk j tk�1) +
P
k

logPij (tk j tk�1) (M7)

(2.2.9)

Here, we use Pij (�) to specify the probability for the i-th segmentation pattern and the j-th tag

sequence, with the corresponding indices within the parentheses omitted.

Model M5 is used to find the best parts of speech sequence associated with the ambiguous

segmentation patterns. So the segmentation pattern that produces the most possible lexical tag

sequence is regarded as the desired one. In Model M6, the parts of speech sequence is taken into

account to facilitate word segmentation model M4. In model M7, the segmentation is considered

best if the segmentation pattern maximizes the sequence of corresponding parts of speech and

the sequence of words. Because both word sequence and lexical tag sequence are the target of

optimization in this process, such a formula can be used, with some reestimation techniques, to

segment the words and assign parts of speech to each word at the same time automatically.

3. Discrimination And Robustness Oriented Adaptive Learning

There are several technical problems with a general probabilistic model. First, the model

might not be good enough to formulate the characteristics of the task under consideration.

This problem can usually be dealt with by using appropriate features and by considering more

contextual information when constructing the model. Second, the parameters of the model might

not be estimated correctly due to the lack of a large corpus. This problem can usually be made

less severe by using a larger database or better estimation techniques. Nevertheless, even though

such a modeling problem and an estimation problem can be resolved, it does not mean that

an ranks of the estimated probabilistic measure are the same as the ranks of preference of the

candidate segmentation patterns.

The probabilistic measure is simply a preference measure that reflects the probability of

making a correct choice. Correct recognition, however, depends upon the relative order of the
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ranks of the candidates. The criteria of rank ordering and maximum likelihood are usually not

equivalent, although they are highly correlated. Therefore, maximum likelihood estimation does

not necessarily result in the minimum error rate for data in the training set. For these reasons,

the estimated parameters for the baseline models need to be adjusted to reflect the ranks of the

candidate segmentation patterns. Hence, another (probably more) important issue is to adjust the

estimated likelihood measures so as to reflect the real ranks. We do this by adjusting the values

of these probability terms based on the misjudged instances. By doing so, the set of parameters

can be adjusted with the goal of minimizing the error rate of the training corpus directly.

Furthermore, since statistical variations between a testing set and a training set are not taken

into consideration in the baseline models, minimizing the error rate in the training set does not

imply maximizing the recognition rate in an independent testing set. To enhance robustness, an

extra step can be adopted to enlarge the difference in scores between the best scored candidate

and the other candidates. This step will enhance the robustness of the model so that it will not

be affected significantly by different text styles.

3.1 Robust Adaptive Learning

The goal of adaptive learning is to provide a new parameter set, �0, such that the new

parameters in �0 can provide more discrimination capability than the original parameter set �

by adjusting the current parameters based on the misjudged training tokens. The basic idea is

to adjust the parameters associated with the segmentation score of the correct candidate when

the correct candidate is superseded by other candidates of larger scores; the adjustment will be

continued until the modified score of the correct candidate is the largest among all candidates. Let

yk be the candidate whose segmentation score is the largest among all the candidates for the k-th

training sentence, and let zk be the correct candidate, then a distance measure d� (yk; zk) could

be defined as a measure of separability between yk and zk. In particular, since we are concerned

with the ranking order of the scores of the candidates, the differences of the segmentation scores

could be used as the distance measure.

A larger difference between the segmentation scores for the correct candidate and the highest-

scored candidate implies larger penalty of misjudgement. Thus, we can define a loss function
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as an increasing function of the distance, such as tan�1 (d�=d0) (Amari [1]), to indicate the

penalty suffered from misjudgement.

To acquire a better parameter set, each parameter corresponding to the misjudged sentence

is changed by a small amount in each iteration of learning so as to reduce the penalty of

misjudgement; the amount of adjustment, say �A, will depend on the loss or penalty of

misjudgement. Take the adjustment of the parameters for the following segmentation patterns

as an example:

W1 W2 W3

W1 W2 W3

1.

2.

if we are to use the context-independent model M1, then the segmentation scores for these

patterns can be evaluated from 5 parameters, namely, P1 = logP(W1), P2 = logP(W2), P3 =

logP(W3) and P10 = logP(W10), P20 = logP(W20), P30 = logP(W30) ( = P3, in this case). Assume

that the initial segmentation score of first candidate (which is also the correct pattern) is evaluated

from P1 = -1.8, P2 = -2.6, P3 = -1.7, and the second candidate, which has the highest-score, is

evaluated from three parameters P10 = -1.6, P20 = -2.3, P30 = -1.7, then the distance between

these two candidates could be defined as the difference between the scores, namely (-1.6 -2.3

-1.7) – (-1.8 -2.6 -1.7) = (-5.6) - (-6.1) =0.5.

If the value of the loss function for this distance is 0.46, and the amount of adjustment, �A,

for that amount of loss is 0.2, then we have a revised parameter set: P1 = -1.8+0.2 = -1.6, P2

= -2.6+0.2 = -2.4, P10 = -1.6-0.2 = -1.8, P20 = -2.3-0.2 = -2.5 and , P3 = P30 = -1.7. Note that

since P3 (P30) happens to be adjusted in both patterns by the same amount, this parameter will

not be changed after adjustment.

Although the amount of adjustment for the various P(W)’s is shown to be the same in the

current example, it may have to be weighted differently when we consider different information

sources jointly. For instance, in model M6, we may use a smoothing technique to get a better

estimated score by assigning different weights to the P (wk j lk�1) terms and the P (tk j tk�1)

11



terms. Under such circumstance, the amount of adjustment for these two kinds of parameter sets

will also be weighted with the same weights to account for their respective contributions.

It is obvious that the correct candidate now has a higher score after parameter adjustment.

Moreover, the parameters for the highest-scored candidate, which might be responsible for the

misjudgement, are reduced after adjustment. So other misjudged sentences might also be affected

by the adjustment of these parameters.

If the correct candidate is still not the one with the highest score after the adjustment, the

same procedure will be repeated; the parameters of the correct candidate and the (possibly new)

highest-scored candidate will be adjusted further until the correct candidate has the highest score.

Under appropriate conditions, it can be proved that the average amount of change in average

loss will be decreased due to the adaptation (Amari [1]). Therefore, it is guaranteed that, by

adjusting the parameters � of the baseline models in this manner, the discrimination power, in

terms of the distances between the correct candidate and the other segmentation patterns, will be

increased. Furthermore, since the amount of change in the parameters is directly proportional to

the gradient of the loss function (Amari [1], Chiang [4], Su[8]), this also implies changing the

parameters � in the direction in which the change in mean loss is the most drastic. Therefore,

the speed of convergence is fast with this learning algorithm.

In addition to enhancing the discrimination power of the segmentation models, the robustness

of the segmentation models is also an important concern. The robustness could be enhanced

by increasing the “margin” of distances between the correct pattern and the other competing

candidates (Su [8]). This can be done by adjusting the scores of the correct segmentation pattern

as well as the one with the secondary highest score after the correct segmentation pattern has been

assigned the highest score. The adjustment of the parameters will stop only after the distance

margin between the correct one and the candidate with the secondary highest score exceeds a

given threshold. This will ensure that the correct candidate is separated from other competing

candidates by at least the prescribed amount of margin. In this stage, the loss will be measured

in terms of the distance between the top 2 candidates.

By enforcing a “margin” between the correct segmentation pattern and the most competitive
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candidate, the segmentation score will be more robust in the sense that any statistical variations

between the training corpus and the real instances in the various applications could be properly

suppressed. Since the instances in real applications could not be predicted in advance, it is

important to enhance the robustness of the segmentation models in this way. For more technical

information on the robust adaptive learning algorithm, please refer to (Amari [1], Chiang [4],

Su [8]).

3.2 Resolution of the Unknown Word Problem

Most word segmentation models in the literature are based on a simple assumption that

all words in the text could be found in the system dictionary; there are no “unknown words”

to the dictionary. However, as will be seen in a later section, such an assumption is usually

unrealistic; the error introduced by unknown words, such as unknown proper nouns, constitutes

a large fraction of the error rate in word segmentation. Therefore, it is important to take the

unknown word problem seriously in dealing with real applications.

A word may become unknown to the system simply because it was not stored in the dictionary

when the dictionary is constructed or because it belongs to some particular types of words, such

as proper nouns, that can not be enumerated exhaustively. Sometimes, a substring of an unknown

word is a legal word in the dictionary. In this case, the unknown word will be divided into pieces

in a simple dictionary lookup process. It is also possible that an unknown word is a substring of

some legal words in the dictionary. In this case, the unknown word will be hidden behind the

legal word. All these error transformations: missing entry, separation of the unknown word into

pieces, and being hidden by a legal word, make it impossible to find all segmentation patterns

by a simple dictionary lookup process.

The general solution is to take possible inverse error transformations in the vicinity of an

unknown word; then, evaluate the segmentation score or a revised version of it to select the

most likely segmentation pattern, with unknown words being recognized as a particular class of

character stream of unknown length. This means to extend the segmentation patterns acquired

from simple dictionary lookup by combining or dividing characters in a prescribed window

where an unknown word is suspected to occur, and choose the most likely segmentation patterns
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from the set of extended segmentation patterns, including those candidates that are introduced

by the unknown word problem. The general solution could be very complicated and will be

addressed in other papers. Here, we just show a simplified version, and reveal some technical

issues in unknown word resolution.

In particular, we could regard an unknown word, say wu, as a unit of unknown length lu that

could possibly appear anywhere in the region where an unknown word is suspected to occur.

We then use the dependency of the class of unknown words with their context to determine the

preference of the various segmentation patterns. The main task is to determine the positions and

lengths of the unknown words in the suspected “unknown word regions” as shown below.

... W W W ...

... l l l ...k-1 u k+1

k-1 u k+1

P(W | l )u k-1 P(W | l )k+1 u

unknown word region

Figure 1 Evaluating segmentation score when unknown words are encountered.

For simplicity, assume that an unknown word region has been identified and exactly one

unknown word is within the region, then we can formulate the segmentation score as in any of

the previously mentioned models by replacing wi;k in one of the probability terms with wu, and

evaluate the segmentation scores for the various possible locations and lengths in the same way

as if it was a known word. For example, if model M4 is applied to the suspected unknown word

position and word length in Figure 1, we will have probability terms like:

score � � � � � P (wu j lk�1)� P (wk+1 j lu)� � � � (3.2.1)

where P (wu j lk�1) is the probability that an unknown word will follow a word of length lk�1,

and P (wk+1 j lu) is the probability that the next word wk+1 will appear after an unknown

word of length lu.
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The transition probabilities concerning the unknown words could be estimated from the

training corpus by counting the relative frequencies of the lexical entries that could not be found

in the system dictionary and the word lengths of their surrounding words.

Also, to rate the possibility that the suspected unknown word region does contain an unknown

word, the above formulation must contain a factor of the form:

P

�
c
j
i
contains an unknown word of length lu at position k j cn1

�
(3.2.2)

which serves to detect the unknown word regions. The detection of the unknown word regions

is a nontrivial task. For the present, we just use the available word length information and the

following simplified formula to account for the above factor:

P (Luwr)� P

�
wu 2 c

i+Luwr�1
i

j Luwr

�
� P

�
lu j wu 2 c

i+Luwr�1
i

�
(3.2.3)

where P (Luwr) is the prior probability that the unknown word region (“uwr” ) consists of isolated

single characters of length Luwr, wu 2 c
i+Lunr�1
i

stands for the event that an unknown word

does exist in the unknown word region, and P

�
lu j wu 2 c

i+Lunr�1
i

�
is the probability that

the unknown word length in such an unknown word region is of length lu. The results and the

potential problems will be investigated in the analysis section.

4. Test And Analysis

4.1 Simulation

To compare the performance of the various models, a Chinese text corpus with articles from

different domains is constructed for evaluation. The contents of the corpus are mostly related

to politics, economics and movie reviews.

The sentences are segmented by hand so that they could be used for training or testing.

The characters between punctuation marks are segmented into smaller tokens. Because there is

no common standard about the definition of Chinese words, some rules of thumb are used for
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manual segmentation. In particular, the following principles of segmentation are taken to keep

it as consistent as possible.

1. Frequently used compound nouns and idiomatic expressions are segmented as single words

without further segmentation.

2. A segment that has a direct mapping with an English word is considered a Chinese word.

This technical principle is adopted specifically for the machine translation system we are

working with.

3. Small segments that could be derived with general morphological rules are merged and be

regarded as one word. In general, such words can be formed in the lexical analysis phase

with a simple finite state machine. Therefore, the merged segments are considered a word

that should be output by the segmentation algorithm as one unit.

4. When a segment is segmented into smaller tokens and the semantics of this segment can

not be recovered by the compositional semantics of the smaller tokens, then the original

segment will be regarded as a single word.

5. A large segment that contains a predicate part, its arguments or complements, negation

markers or aspect markers is divided into smaller segments corresponding to the respective

parts. This makes it easy to map each part to its syntactic or semantic construct when used

for natural language applications. In fact, the purpose of word segmentation is to find the

terminal words to be used by a syntactic or semantic analyzer. Therefore, those segments

that could be mapped directly to the syntactic or semantic constructs are identified as such

terminal words.

6. When conflicts are encountered in applying these principles, judgement is given by the

human according to the frequency of use.

Part of the corpus is used as the testing set for testing. The testing sentences are scanned

and all ambiguous segmentation patterns allowed by dictionary lookup are constructed. The

various segmentation patterns are then scored with the various segmentation models. Adaptive

learning as well as robustness enhancement are performed to improve the segmentation models

in some testing cases.
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The dictionary contains 99,441 entries, and about 9,755 words are encountered in the corpus.

The tag set for models M5 – M7 contains a total of 22 parts of speech for Chinese and 3 special

markers. To see the effects of unknown words on the performance of word segmentation, some

tests are conducted in two modes, one with unknown words in the testing sentences and the

other with all sentences containing unknown words removed from the testing sentences. The

parameters concerning the training corpus and the testing environment are listed in Table 7.

4.2 Performance Evaluation

The performance is evaluated in terms of word accuracy or sentence accuracy (error rates

defined as “100%-Accuracy” are also included in the parentheses). The word accuracy is defined

as the number of correctly segmented words divided by the total number of words in manually

segmented sentences. The sentence accuracy, on the other hand, is defined as the number of

correctly segmented sentences divided by the total number of sentences involved in testing. Here,

a sentence actually refers to a segment between the punctuation marks. A sentence is said to be

“correctly segmented” if none of the words in the sentence is incorrectly segmented.

Training Set Accuracy (*) Testing Set Accuracy (*)

Model word (%) sentence (%) word (%) sentence (%)

Max Match 95.99 (4.01) 79.26 (20.74) 95.77 (4.23) 79.32 (20.68)

P(Lk|Lk-1) 91.30 (8.70) 54.46 (45.54) 90.59 (9.41) 52.14 (47.86)

P(m|n) 92.81 (7.19) 61.39 (38.61) 92.18 (7.82) 60.70 (39.30)

P(Wk) 96.38 (3.62) 80.19 (19.81) 96.06 (3.94) 80.03 (19.97)

P(Wk|Lk-1) 96.32 (3.68) 79.92 (20.08) 95.93 (4.07) 78.96 (21.04)

(*) The numbers in the parentheses show the error rates: 100% - accuracy

Table 1 Baseline Performance WITH Unknown Words
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Training Set Accuracy Testing Set Accuracy

Model word (%) sentence (%) word (%) sentence (%)

Max Match 98.86 (1.14) 95.95 (4.05) 98.78 (1.22) 95.93 (4.07)

P(Lk|Lk-1) 93.84 (6.16) 62.43 (37.57) 93.18 (6.82) 59.91 (40.09)

P(m|n) 94.76 (5.24) 71.47 (28.53) 94.29 (5.71) 70.40 (29.60)

P(Wk) 99.46 (0.54) 97.93 (2.07) 99.24 (0.76) 97.50 (2.50)

P(Wk|Lk-1) 99.53 (0.47) 98.23 (1.77) 99.27 (0.73) 97.50 (2.50)

Table 2 Baseline Performance WITHOUT Unknown Words

Training Set Accuracy Testing Set Accuracy

Model word (%) sentence (%) word (%) sentence (%)

P(Lk|Lk-1) 95.83 (4.17) 78.67 (21.33) 95.63 (4.37) 78.67 (21.33)

P(m|n) 95.67 (4.33) 77.82 (22.18) 95.57 (4.43) 78.53 (21.47)

P(Wk) 96.72 (3.28) 81.21 (18.79) 96.16 (3.84) 79.74 (20.26)

P(Wk|Lk-1) 96.77 (3.23) 81.72 (18.28) 96.00 (4.00) 78.96 (21.04)

(+) The number of iterations for learning is 10 iterations.

Table 3 Performance WITH Unknown Words after LEARNING

Training Set Accuracy Testing Set Accuracy

Model word (%) sentence (%) word (%) sentence (%)

P(Lk|Lk-1) 98.80 (1.20) 95.35 (4.65) 98.81 (1.19) 95.86 (4.14)

P(m|n) 98.74 (1.26) 95.01 (4.99) 98.77 (1.23) 95.79 (4.21)

P(Wk) 99.62 (0.38) 98.40 (1.60) 99.32 (0.68) 97.50 (2.50)

P(Wk|Lk-1) 99.89 (0.11) 99.52 (0.48) 99.39 (0.61) 97.65 (2.35)

Table 4 Performance WITHOUT Unknown Words after LEARNING
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Training Set Accuracy Testing Set Accuracy

Model word (%) sentence (%) word (%) sentence (%)

P(Tk|Tk-1) 99.18 (0.82) 96.86 (3.14) 99.08 (0.92) 96.79 (3.21)

P(W)*P(Tk|Tk-1) 99.34 (0.66) 97.11 (2.89) 99.11 (0.89) 96.43 (3.57)

P(W|L)*P(Tk|Tk-1) 99.91 (0.09) 99.55 (0.45) 99.39 (0.61) 97.65 (2.35)

P(W|T)*P(Tk|Tk-1) 98.53 (1.47) 93.21 (6.79) 98.50 (1.50) 93.94 (6.04)

Table 5 Performance WITHOUT Unknown Words but WITH Lexical Tag Information after LEARNING

Training Set Accuracy Testing Set Accuracy

word (%) sentence (%) word (%) sentence (%)

before learning 61.94 (38.06) 14.96 (85.04) 60.36 (39.64) 13.62 (86.38)

after learning 98.22 (1.78) 91.65 (8.35) 96.41 (3.59) 84.74 (15.26)

Table 6 Performance for Unknown Word Resolution (Baseline and Learning for 10 iterations)

Model
Number of

Parameters
Model

Number of

Parameters

P(Lk|Lk-1) 40 P(Tk|Tk-1) 625

P(m|n) 229 P(W)*P(Tk|Tk-1) 9,755+625

P(Wk) 9,755 P(W|L)*P(Tk|Tk-1) 14,473+625

P(Wk|Lk-1) 14,473 P(W|T)*P(Tk|Tk-1) 10,231+625

Training Set 41599 words / 5608 sentences

Testing Set 10134 words / 1402 sentences

Dictionary 99441 entries

Lexical Tags 22 parts of speech & 3 special tags

Ambiguity 8.6 candidates/sentences (both training set & testing set)

Table 7 Testing Environment
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Baseline Performance

Table 1 and Table 2 show the baseline performance, where models M1, M2, M3 and M4 in

Eq. (2.2.6) are adopted. In Table 1, the training and testing sentences contain unknown words,

which can not be found in the dictionary. In Table 2, sentences in the training and testing

corpora containing unknown words are not included.

A commonly used heuristic approach, called the “max(imum) match” model, is also shown

for comparison. It scans the input from left to right and from right to left, respectively, to match

against the dictionary entries; the one with a smaller number of words is considered the preferred

segmentation pattern. During the scanning process, if two matches against the dictionary entries

are possible from the current word boundary, then the one with a larger number of characters is

selected as the correct match. If the total number of words in the two scanning directions are the

same, then the first distinct word, either from left or from right, is compared. The segmentation

pattern that corresponds to the word with the largest number of characters is selected as the

preferred pattern.

There are several interesting and important points to point out concerning the above per-

formance. First, it is surprising that a “ trivial” model like model M2 (Pi (lk j lk�1)) or model

M3 (P (mi j n)), which uses only the word length, word count and character count information,

achieve comparable performance in word accuracy with the other models that make use of word

information.

As noted previously, Chinese words are mostly double-character words, single-character

words and tri-character words. This implies that there might be useful information in the

dependencies between word lengths and even character counts or word counts. Therefore, it

is significant to use such features for segmentation. As can be seen from the tables, such a

trivial model is not significantly worse than other more “ reasonable” models. This means that

word segmentation could be easily resolved statistically even with a simple model like model

M2 or M3. This fact also encourages the use of a statistical approach for word segmentation.

Because the number of parameters for these two models are very small and the parameters do

not refer to any lexical entries, they could be used in some applications where a large dictionary
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is unavailable.

Second, the unknown words introduce significant error rates. The word accuracy differs by

about 2–3% in both training set (close test) accuracy or testing set (open test) accuracy. And

the sentence accuracy differs by about 8%-19%. This means that unknown word problem is a

major source of errors for the word segmentation problem.

The difference is also observed between Table 3 and Table 4 even after adaptive learning is

applied; in this case, the difference in word accuracy is about 3% and the difference in sentence

accuracy is about 17–19%.

In Table 1, M4 model is slightly better than M1 model; in Table 2, M1 is slightly better

than M4. However, the difference in word accuracy is not more than 0.1% and the sentence

accuracy differs by less than 1%. So it is hardly distinguishable. The same is true when we

compare the corresponding rows in Table 3 and Table 4 where adaptive learning is applied. A

larger difference is observed only when the tag transition probabilities (P (tk j tk�1)) is jointly

considered for segmentation as shown in Table 5. In general, the M4 model is slightly better

than M1. But it is slightly worse than M1 when unknown word exists. Yet both models are

better with respect to the maximum match heuristics.

Adaptive Learning

Table 3 and Table 4 show the performance after the robust adaptive learning algorithm is

applied to the baseline models. Since the maximum match algorithm is a deterministic process,

it lacks the capability of learning, and hence is not shown in the tables. Ten iterations are

conducted in the learning process.

When comparing Table 3 and Table 4 with Table 1 and Table 2 respectively, some facts are

observed. First the simple models M2 and M3 are greatly improved both in word accuracy and

sentence accuracy. The improved performance is comparable with the other models which use

word information. This confirms the underlying principle of adaptive learning in which finding

the correct ranks among the estimated scores, rather than finding a better estimate of the scores,

plays an important role in statistical word segmentation (and in virtually all such statistical

frameworks.) This may also imply that the initial baseline model might not be as important as
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the learning process, although it is important to have a good initial guess. Indeed, the criterion of

the initial baseline models is to minimize the risk of misjudgement by maximizing the estimated

probability measure. On the other hand, the goal of a robust adaptive learning algorithm is to find

a direct mapping between the ranks of the candidates and overcome statistical variations between

the training and testing sentences by minimizing the system error rate directly. Therefore, as

observed in the tables, it is more robust for unseen text after learning.

The improvement for M1 and M4 models are less obvious because the baseline performance

is already very good before learning. In fact, a few instances in Table 3 and Table 4 shows a

little degradation due to over-tuning of the parameters.

Segmentation with Lexical Tags

Table 5 shows the performance where lexical tags (i.e., parts of speech) are used in word

segmentation. These rows correspond to the models M5, M6, M7 in Eqn. (2.2.9). In

comparison with Table 2, the baseline model M5 (P (tk j tk�1)), which uses lexical tags for

segmentation, does not show more promising performance than M1 or M4, although its word

accuracy can achieve as high as 97%. The model M1 (P (wk)), when jointly considered with

the lexical tag transition probability (P (wk)� P (tk j tk�1)), is in fact degraded slightly. Only

a small improvement in M6 (P (wk j lk�1)�P (tk j tk�1)) is observed, where the tag transition

probability is considered jointly with model M4. This might be due to the very free linear order

of the Chinese language.

Note that the overall performance of model M6 is the best among all when robust adaptive

learning is applied. Word accuracy in this operation mode can achieve as high as 99.91% for the

training set and 99.39% for the testing set. The sentence accuracy is 99.55% and 97.65% for the

training set and the testing set, respectively. Since it is used to optimize the segmentation pattern

and the tag sequence, it is useful for automatic tagging of plain Chinese text and automatic

construction of a Chinese dictionary.

However, if adaptive learning is not applied, its performance is less satisfactory than the

baseline model. Under this condition, the baseline model, which uses the transition probabilities

P (wk j lk�1) for segmentation, has the best performance among all interesting models. The
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performance is achieved without extra cost beyond what is required for the context-independent

word model (M1); the same corpora for the M1 model could be used to acquire the required

parameters. Therefore, a good model along with robust adaptive learning could result in a

cost-effective segmentation model without using extra resources.

Lexical Tags v s .Learning

In contrast to the adoption of adaptive learning, using lexical tags does not seem to help

much in word segmentation. This can be verified by comparing the P (wk) � P (tk j tk�1)

and P (wk j lk�1)� P (tk j tk�1) performance in Table 5 with the performance of P (wk) and

P (wk j lk�1) models in Table 4; the small amount of degradation might imply that adaptive

learning is more effective in improving the baseline models than using the lexical tag information

unless adaptive learning is also applied.

Unknown Word Problem

As described previously, the error rate introduced by unknown words is significant. Many

models in the literature are based on the assumption that all words in the text could be found

in the system dictionary. It is evident, however, that such an assumption is unrealistic from the

experiment results. This seems to imply that more research energy should be directed toward

unknown word resolution rather than the development of alternative baseline models.

Table 6 shows the performance for unknown word resolution with the model proposed

in the previous section. It is interesting to note that the accuracy of the performance of the

baseline model is very low. This is probably a generic phenomena for all kinds of error

correction problems; because the segmentation patterns are extended according to the error

types, the candidate patterns are no more confined to the patterns that could be generated with

dictionary lookup. Hence, the number of possible segmentation patterns increases drastically,

and the performance of the baseline model tends to degrade. Another factor that accounts for the

degradation in the baseline performance is the estimation error of the model parameters. Because

all unknown words are regarded as a special class of words with the same statistical behavior, the

estimated probabilities, such as the P (wu j lk�1) term, may not indicate the specific distribution
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of the specific unknown word under consideration. To resolve this problem, adaptive learning

is essential.

In comparison with the best baseline performance in Table 1 and the best learning results in

Table 3, where unknown words are not properly handled, the word accuracy is slightly improved

and the sentence accuracy shows more significant improvement. However, we also noted that

some isolated single-character words are merged by mistake after examining the testing sentences.

This means that the current features, namely the sentence length, word count, and character count,

that was used for detecting the unknown word region and the existence of the unknown words

may not be very effective for unknown word resolution. If better features could be used, the

improvement will be more evident.

Cost Concern

The costs of the various models are directly related to the corpus size and the number of

parameters to be estimated. Among the tested models, model M2 and M3 have the smallest

number of parameters. As shown in the above experiments, many models proposed here do

not have significantly different performance in terms of accuracy on segmentation. The costs

of the models are thus important in some applications. This seems to suggest that we could

start with a simple baseline model and use an adaptive learning algorithm to acquire low cost

yet high performance word segmentation. It also suggests that we could use the less expensive

models, for example, to bootstrap an automatic dictionary construction process from very few

available corpus resources.

5. Conclusion

In this paper, we have proposed a generalized word segmentation model for the Chinese word

segmentation problem. We have shown how to use the various available information to resolve

the segmentation problem based on the generalized model. It is shown that word segmentation

can be easily and inexpensively resolved with the proposed statistical models. Word accuracy

as high as 96% and sentence accuracy up to 80% can be achieved in the baseline model when
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there are unknown words. When there are no unknown words, the performance is about 99%

for words and 97% for sentence.

In addition to the baseline models, a robust adaptive learning algorithm is proposed to

enhance the performance of the baseline models so that these models could perform well even in

handling unseen text. It is noticed that a good adaptive learning algorithm is critical to facilitate

word segmentation. The reason is that a good robust adaptive learning algorithm provides a

scoring mechanism that directly minimizes the error rates both in the training corpus and the

testing set. Therefore, it provides better discrimination power in ranking the large number of

possible segmentation patterns.

We also find that the unknown words contribute a significant portion of the error rate. To be

practical in real applications, the unknown word problem should therefore be taken seriously. In

this paper, we have proposed an error correction mechanism which resolves the special unknown

word problem. With such a mechanism, the unknown word problem could be relieved to some

extent.

Throughout the framework, we had tried to use extra information from the least expensive

features already available in a segmented corpus. By using the extra features of character count,

word count and word length information, it is shown to improve the system performance with

respect to the other models that do not use them.
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