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Day-2: Unsupervised Learning for Natural Language 
Processing

■ Part I: Introduction
◆ What and When for Unsupervised Learning, Why it is getting popular

■ Part II: Basic Concepts and Background (using EM as an 
example)

◆ Incomplete Data Space
◆ Learnability

■ Part III: Typical Unsupervised Learning Algorithms: Viterbi & EM
◆ Procedures, Characteristics

■ Part IV: Potential Traps & Source of Problems
◆ Various Mismatches, Model Deficiencies, Local Maximum, and Over-fitting

■ Part V: Suggested Strategies for Better Performance
◆ Lessons Learned from Past Experience
◆ Recommended Procedures for Unsupervised Learning

■ Part VI: Advanced Topic: Co-Training
◆ Basic Principles
◆ Example: Chinese New Word Extraction

■ References
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Part II: Basic Concept for Unsupervised Learning

■ Learning Desired Model from Partially Observable Features
◆ How to train a model in which not all its features adopted are known in 

the training set?

■ What kind of Parameters are Learnable?
◆ Given sufficient training data, what kind of parameters can be learned?

■ Maximum Likelihood Estimation (MLE)
◆ How to obtain those parameters under unsupervised learning?

■ Performance Issues
◆ Mismatch between the criteria of maximum likelihood and minimum 

error rate, and between the performance of the training set and the 
testing set

■ Performance versus Corpus Size & Model Complexity
◆ General trend for the performance we can obtain
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Learning from Partially Observable Features (1)

■ Incomplete Data Space: 

◆ All observable features in the training set are in the incomplete data 
space.

◆ The incomplete data space only contains the partial information about 
those features that will be adopted in the model.

■ Complete Data Space: 

◆ All features that will be adopted in the model are in the complete data 
space.

◆ The feature vector in the incomplete data space is mapped from the 
complete data space (with usually a many-to-one relationship).

◆ In many cases, we need to infer parameters of complete data space 
from the sample space of incomplete data.
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Learning from Partially Observable Features (2)

■ Unsupervised-learning: learning model in the complete data 
space through the features in the incomplete data space

◆ Under supervised-learning, all the features involved in the model 
can be directly observed in the training data 

✦ For example, both “Words” and their associated “Tags” can be seen in 
the annotated corpus for the statistical tri-gram tagging model

◆ Under unsupervised-learning, not all the feature values are known 
in the training data 

✦ Only “Words”, not their associated “Tags”, can be seen in the un-
annotated corpus for the above statistical tri-gram tagging model

◆ The feature vector in the complete data space contains all the 
feature elements adopted in the model, although part of them are
missing from the training data
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Learning from Partially Observable Features (3)

■ Learning Step 1: Guess the associated data in the complete 
data space

◆ Viterbi: Hard Labeling

◆ EM (Expectation and Maximization): Soft Labeling

■ Learning Step 2: Perform Maximum Likelihood Estimation

◆ Viterbi: Find the parameter set that has the maximum probability to 
generate those hard-labels in complete data space

◆ EM: Find the parameter set that has the maximum probability to 
generate those soft-labels in complete data space
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Learning from Partially Observable Features (4)

■ Generic Model Example [Dempster 77]

◆ 197 animals are multinomially distributed into 4 observable 
categories (in the incomplete data space); however, they should be 
divided into 5 categories according to their true genetic model (in 
the complete data space). Please see Part III for details.

◆ Incomplete Data Space: [y1, y2, y3, y4]

◆ y=(y1, y2, y3, y4)=(125,18,20,34).

◆ cell probabilities: (1/2+1/4� , 1/4(1- � ), 1/4(1- � ), 1/4� ) [with one 
parameter � ]
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Learning from Partially Observable Features (5) 

■ Generic Model Example [Dempster 77] (cont.)

◆ Complete Data Space: [X1, X2, X3, X4, X5]
◆ Cell probabilities: (1/2, 1/4� , 1/4(1- � ), 1/4(1- � ), 1/4� ) [with one 

parameter � ]
◆ y1 = x1+x2, e.g., (125, 0), or (124,1), or … Note: (X1, X2) => Y1: many-

to-one mapping. y2 = x3 , y3 = x4, y4 = x5.

◆ Given Y1=X1+X2, both are drawn from multi-nominal distributions 
sharing the same parameters, we guess the values of x1 and x2 (might 
be non-integer)
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Learning from Partially Observable Features (6) 

■ NLP Example: part of speech tagging 

◆ Find the appropriate tag sequence c1
n (=c1, c2,…, cn),  to be 

associated with the given word sequence w1
n (=w1, w2,…, wn), in 

the training corpus. Please see Day-2 Part III for details.

◆ Incomplete Data Space: the given word sequence w1
n

◆ Complete Data Space: both the given word sequence w1
n and its 

associated tag sequence c1
n (=c1, c2,…, cn) 

◆ Given a word “design” that has two possible tags {noun, verb}, is it 
possible to know the real tag of “design” in a particular context from 
a large number of instances of “design” in the given untagged 
corpus ?

✦ Note: {noun, verb} => “design”: two-to-one mapping
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Why build model on the features that we don ’t know 
their values?

■ Sometimes, the model in the complete data space is the real 
operating model

◆ Example: the above genetic problem (which is more closely match 
the real underlying operation mechanism)

■ Or, the unobservable features are happen to be the ones that 
we are really interested 

◆ Example: POS in tagging problem



6

2002/08/18 Keh-Yih Su / Jing-Shin Chang      Statistical NLP     D2-Part-II 11

Why build model on the features that we don ’t know 
their values (cont.)? 

■ Last, in many cases, introducing more intermediate parameters 
(and then conditioning on them) help to decompose the original 
problem into a set of more manageable and simpler sub-problems

◆ This is the divide-and-conquer strategy
◆ Examples:

✦ Intermediate forms (e.g., parse tree and semantic form) adopted in the 
model of Corpus-Based Statistics-Oriented (CBSO) Machine Translation 
System

✦ States in the Hidden Markov Model (HMM) adopted in the task of speech 
recognition
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What kind of Parameters are Learnable (1)

■ Learnability Issues [Duda & Hart 73]

◆ Learning parameters from unlabelled data is possible for many 
cases, BUT

◆ Learning parameters may not always stop at the best desired 
parameter set even though the likelihood value is maximized

■ Parameter Learning & Identifiable Issues

◆ Most learning methods assumes that observed data x was drawn 
from a distribution p(x|� ) of known form (statistics structure) with a 
set of parameters �

◆ Statistical learning is to uncover the parameter set � by estimating 
their values via maximum likelihood estimation.
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What kind of Parameters are Learnable (2) 

■ Parameter Learning & Identifiable Issues (cont.)

◆ A parameter set 
�

is identifiable (or, learnable) in the specified feature 
space, if for any other 

�
’ \= 

�
, there exists at least an x such that p(x| 

�
) 

\= p(x | 
�

’).

✦ We are unable to identify the true parameter set � , if each element in a 
specific sub-set in the parameter space shares the same likelihood function.

✦ If a parameter set � is not identifiable, then we will have a collection of 
global optimum points in the parameter space (with equal maximum
likelihood value) 

✦ Situation might change when we adopt different feature spaces or models.

◆ Most mixtures of commonly encountered continuous density functions 
(i.e., continuous RVs) are identifiable

◆ Mixtures of discrete distributions are not so obliging
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What kind of Parameters are Learnable (3)

■ Example of Unidentifiable Distribution [Duda & Hart 73]

◆ p(x|� ): is not identifiable if P( � 1) =P(� 2)

✦ � 1 and � 2 can be exchanged without affecting the distribution

✦ < � 1, � 2> has non-unique solutions even though the one(s) with 
maximum likelihood value could be found by any searching or learning 
method

◆ p(x|� ): is identifiable, if P( � 1) \=P( � 2)
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What kind of Parameters are Learnable (4) 

■ Example of Bigram model for POS tagging

◆ P(w1
n|

�
) is not identifiable for many possible w1

n.
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Multiple Local Maximum Points (1)

■ The Log-likelihood function of the K-parameters Exponential 
Families has only one global optimum point in the parameter 
space; thus they are identifiable

◆ K-parameters Exponential Families include many functions that we 
are familiar, such as Gaussian, multi-nomial, etc.  [Bickel 77]

◆ Log-likelihood function of the K-parameters Exponential Families is 
a convex function

◆ Search can start from any initial point
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Multiple Local Maximum Points (2) 

■ Mixture density functions, such as above examples, are not 
belong to those families

◆ In general, they might have many local optimum points in the 
parameter space.

◆ They even might have several global optimum points in the 
parameter space

■ However, we do not really worry about this issue in NLP tasks, 
because we usually only search for the nearest local maximum 
(not even for the unique global optimum point)
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Multiple Local Maximum Points (3)

■ Example

◆ Unsupervised learning with Maximum Likelihood Estimation would 
produce two local maximums (two global optimum points if P(w1) = 
P(w2))
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Labeled data are required to attach class-labels 

■ If models are class-specific (e.g., part-of-speech), not just learning 
some parameter values (e.g., in the above generic model), then 
unlabeled data alone are not enough

◆ Information for identifying Class-Labels is required

◆ For example, we have no idea about which Gaussian component 
should be associated to a specific class-label in the above example

■ Unlabeled data can be used to identify the underlying distributions, 
and only a small number of labeled data is required to assign the 
labels

◆ Converge exponentially quickly in the number of labeled samples 
[Castelli 95]
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Differences between Supervised and Unsupervised 
Learning

■ Supervised:
◆ Features adopted by the Language Model are completely 

observable
◆ Both Observation and Model are in the same Complete Data Space

■ Unsupervised:
◆ Features adopted by the Language Model are not completely 

observable
◆ Observation is in the Incomplete Data Space; however, the model 

is in the complete data space

■ Supervised learning is more efficient than unsupervised learning
◆ Supervised learning generally will have better performance given

the same amount of training data
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Maximum Likelihood Estimation (MLE)

■ The parameters in the statistical language model are usually 
estimated via Maximum Likelihood Estimation (MLE) method

◆ MLE find the point in the parameter space that has the maximum 
likelihood to generate the all observations.

◆ Log Likelihood function:

◆ MLE is usually conducted on the Log Likelihood Function (a monotonic 
mapping)

◆ Multiinomial:

◆ Gaussian: 
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Maximum Likelihood Estimation (cont.) 

■ Using relative frequency as the estimation may introduce 
estimation error for entries that occurs very infrequently or 
unseen parameters

◆ Zero occurrence results in zero probability.

◆ Result poor performance in the testing set if the size of the training 
set is very limited

■ MLE approaches achieve the recognition implicitly and indirectly
through the estimation process; thus

◆ Recognition (or disambiguation) is done through the formula: 

◆ Maximizing likelihood is not equivalent to minimizing the error rate 
in a training set.

�
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n
i
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Performance Issues (1)

■ Observations Fitness vs. Human Preference:

◆ Unsupervised learning searches the best parameter set under the 
given form in the complete data space that has the best chance to 
generate those observations in the incomplete data space (i.e., find 
the parameter set that fits data most) 

◆ During disambiguation, candidates are then selected by comparing
their fitness, measured by likelihood value, to the model

◆ However, the system performance is evaluated by the error rate, 
which is actually a measure of human preference

◆ This criterion mis-match is the same as we observed in the 
supervised learning
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Performance Issues (2)

■ Observations Fitness vs. Human Preference (Cont.):

◆ However, since human preference is unveiled in the training set,
increasing model complexity might not reduce the error rate in the 
training set (the over-fitting phenomenon observed in the supervised 
learning might not occur)

◆ Similarly, the training set performance might not be improved when 
we reduce the training corpus size, although the likelihood value will 
increase

◆ Furthermore, during the unsupervised learning process, the likelihood 
value is guaranteed to increase from iteration to iteration. 
Nonetheless, the error rate in the training set might not decrease from 
iteration to iteration (the over-tuning phenomenon observed in the 
supervised learning might not occur)
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Performance Issues (3)

■ Observations Fitness vs. Human Preference (Cont.):

◆ In the supervised learning, the criterion mis-match can be somehow 
compensated by performing the adaptive learning. However,  post-
learning compensation cannot be done in unsupervised learning, as 
the correct answer is not known

◆ Therefore, the performance of unsupervised learning in the training 
set rely more on the correlation between Observations Fitness and 
Human Preference inherited from the model

2002/08/18 Keh-Yih Su / Jing-Shin Chang      Statistical NLP     D2-Part-II 26

Performance Issues (4) 

■ Training Set versus Testing Set (same as supervised learning)

◆ The effect caused by the estimation error will not be unveiled in the 
training set

◆ The parameter obtained from MLE in the training set might not be
the MLE point we will get from the testing set

◆ The fitness (measured by the associated likelihood value) 
manifested in the training set can always be enlarged by increasing 
the model complexity

◆ However, the modeling error usually competes with the estimation
error in the testing set (not in the training set)
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Performance Issues (5) 

■ Performance of unsupervised learning is thus greatly affected by:

◆ Discrimination power associated with the adopted model

✦ Which is the capability to achieve the minimum error rate in the training 
set

◆ Robustness of the model:

✦ Which is the capability to maintain the similar performance in testing set

✦ Usually simpler models are more robust
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Performance Trends versus Module Complexity: 

■ Problems of Models with High Complexity

◆ Increasing the Model Complexity might not reduce the error rate in 
the training set),  and it also does not increase testing set 
performance without limit
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Performance Trends versus Training Corpus Size

■ Problems of Corpora with Small size

◆ Estimation Error: Training Set Performance /= Testing Set Performance
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