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Day-1: Introduction to Statistical Natural Language 
Processing (mainly on Supervised Learning)

■ Part I: Introduction (1)
◆ Problems and Characteristics of Natural Language Processing

■ Part II: Introduction (2)
◆ What, When and Why Statistical Approach

■ Part III: Basic Concepts and Background
◆ Feature Space, Probability, Estimator, Stochastic Process, Data Set 

Classification, and Performance Measure

■ Part IV: Typical Applications
◆ Word Segmentation, Tagging, Selecting Parse Tree, Aligning Bilingual Corpus

■ Part V: Techniques for Improving Performance
◆ Smoothing, Class-Based Model, Adaptive Learning, Tips for Checking

■ Part VI: Advanced Topics: SVM, ME
◆ Support Vector Machine, Maximum Entropy Models

■ Appendix: Related Techniques
◆ Parameter Estimation, Fractional Factorial Experiment Design, Decision Tree



2

2002/08/17 Keh-Yih Su / Jing-Shin Chang      Statistical NLP    D1-Part-III 3

Part III: Basic Concepts and Background

■ Feature Space, Probability
◆ Definition and formulations frequently used in Statistical NLP

■ Estimator and Stochastic Process
◆ Definition and formulations frequently used in Statistical NLP

■ Information Theory
◆ Entropy, Mutual Information, Perplexity

◆ Typical applications in Statistical NLP

■ Data Set Classification
◆ Training-Set, Cross-Validation-Set, and Testing-Set

■ Performance Measure
◆ Error-Rate, Precision, Recall, F-measure, etc.
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Feature Space

■ Experiment:
◆ The process of observing a phenomenon that has variation in its 

outcomes.
◆ Example 1: Observing the outcomes of tossing a fair coin twice.
◆ Example 2: Tagging Part-of-Speech of a Token-Sequence.

■ Outcome Space (Sample Space, Feature Space):
◆ The totality of the possible outcomes of a random experiment.
◆ Flip coin example:

✦ Flip two coins (or flip a coin twice): the associated sample space is: S={HH, 
HT, TH, TT}, where H: head; T: tail.

◆ Tagging part-of-speech:

✦ Every possible combinations of [Token, Tag] pair-sequences
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Feature Space (Cont.)

■ Feature Space decides the performance upper bound

◆ Once outcomes of different classes are mixed in the same feature
space, they cannot be separated again without introducing errors
(disambiguation would be difficult)

✦ Similar to the case that various radio stations must occupy different 
frequency bands

◆ Example 1: Consider a new outcome space of {0, 1, 2} for tossing a 
coin (each outcome denotes the total number of head occurring), 
instead of original {HH, HT, TH, TT}

✦ Question: what is the chance that a first flip is a “Head”?

◆ Example 2: SCFG vs. Lexicon-driven parser

✦ Lexicon related information has been lost in SCFG
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Probability of an Event

■ Event:
◆ An event is a subset of the sample space.
◆ Flipping coin example:

✦ A: at least one head in two tosses.

✦ B: tail at the second toss.

✦ A = {HT,TH, HH},  ~A = {TT}, B = {HT,TT}

◆ Tagging example: “design” is tagged as “n”: {any left context, 
[design, n], any right context}

■ Probability of an Event
◆ Intuitive explanation: the probability of an event expresses the long-

run frequency for the event to occur in many repeated independent 
experiments.

◆ Coin example: P(A) = ¾, P(~A) = ¼, P(B) = ½.
◆ Tagging example: P (n | design)
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Probability Space

■ Probability Space (three axioms)

■ Not everything between 0 and 1 is a probability

◆ For example, |Cos (x)| is not a probability
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Joint Event

■ Joint Probability of Event A and B: the probability that these two 
events occur simultaneously

◆ Notation: P(A, B) or P(A
�

B)

◆ Coin example: P(O1 = H, O2 = T); Event (O1) = {HH, HT}, Event 
(O2) = {HT, TT}, Joint Event = {HT}

◆ Tagging example: P( C(i) = adj, C(i+1) = n); Joint Event = { adj, n }

◆ Marginal: the probability of an event that can be acquired by 
summing over all events that can jointly occur with it:

( ) ( )∑ ∈
=

SB i
i

BAPAP ,
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Conditional Probability

■ Conditional Probability: event A occurs given that B event has 
occurred: 

◆ Notation: P(A|B) = P(A, B) / P(B)

◆ Coin example: P(O2 = T | O1 = H)

◆ Tagging example: P(C(i+1) = n | C(i) = adj)

◆ Conditional Probability is itself a probability 
(it can be regarded as if it is generated from another new outcome 
space)
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Multiplication Theorem of Probability

■ Theorem:

◆ Coin example: P(HT) = P(O2 =T | O1 = H) x P(O1 = H)

◆ Tagging example: P(adj, n) = P(C(i+1) = n | C(i) = adj) x P(C(i) = adj)

■ Generalization:

◆ Coin example: P(HTHH) = P(H|HTH) x P(H|HT) x P(T|H) x P(H)

◆ Tagging example: P(det adj n) = P(n | det adj) x P(adj | det) x P(det)
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Independent and Conditional Independent (1)

■ Independent
◆ Definition: P(A, B) = P(A) x P(B)   =>  P(A|B) = P(A) and P(B|A) = 

P(B)
◆ Coin example: P(HT) = P(H) x P(T)
◆ SCFG:

■ Conditional Independent
◆ Definition: P(A, B| C) = P(A| B, C) x P(B| C) = P(A| C) x P(B| C)

=> P(A| B, C) = P(A| C) and P(B|A, C) = P(B | C)
◆ A word sense model: P(CW1, CW2 | W-Sense) is frequently simply 

assumed to be [ P(CW1 | W-Sense) x P(CW2 | W-Sense) ]
◆ Naïve Baiysian: assumes conditional independency among 

features
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Independent and Conditional Independent (2)

■ Independency does not imply Conditional Independency

◆ Example: P(1st-Throw-Dice-Point, 2nd-Throw-Dice-Point) = P(1st-
Throw-Dice-Point) x P(2nd-Throw-Dice-Point)

◆ However, P(1st-Throw-Dice-Point | 2nd-Throw-Dice-Point, Sum=7) \= 
P(1st-Throw-Dice-Point | Sum=7) 

■ Conditional Independency does not imply Independency

◆ Example: P(Lung-Cancer, Buy-Cigarette | Smoke) = P(Lung-
Cancer | Smoke) x P(Buy-Cigarette | Smoke)

◆ However, P(Lung-Cancer, Buy-Cigarette) \= P(Lung-Cancer) x 
P(Buy-Cigarette)
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Independent and Cond itional Independent (3)

■ Conditional Independent property is frequently used to decouple 
different nodes in Bayesian inference network [Pearl 88]

◆ Example: Diamond-Shape causal-chain, E4 causes E2 and E3, 
then E2 and E3 cause E1

◆ P(E1, E2, E3, E4) = P(E1| E2, E3) x P(E2| E4) x P(E3| E4) x P(E4)

■ An error that should be avoided

◆ Wrong: P (Ci | Wi, Ci-1) = P (Ci | Wi) x P(Ci | Ci-1)

◆ In general, P(A | B, C) \= P(A | B) x P(A | C)
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Bayes ' Rule:

■ Example:

■ If independent, P(A|B) = P(A)

■ Generalization:

◆ where A1,A2,…, An are partitions of the sample space; i.e.,
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Bayes ' Rule (Cont.)

■ Used to avoid an infinite number of outcome spaces, e.g.,

■ Used to factorize features, e.g.,

■ Used to decompose original optimization function

◆ Example: decompose translation score into transfer score and 
generation score 

✦ Note: P(EW1,…,EWn) can be ignored when selecting the best 
candidate
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Random Variable

■ A random variable X on a sample space S is a function X: S -> 
R that assigns a real number X(s) to each sample point s ∈ S.

■ Example: 
◆ X: number of head in the two tosses,
◆ [X = 0] = { TT }

◆ [X = 1] = { TH, HT }
◆ [X = 1] = { TT }.

■ Discrete RV, Continuous RV
◆ Discrete/Continuous RV: X takes discrete/continuous values

■ Examples:
◆ Discrete: C: the lexical category (part-of-speech) of a word

� [C({beautiful, adj}) = adj-index], [C({computer, noun}) = noun-index]

◆ Continuous: Temperature reading
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Random Variable (Cont.)

■ Why random variable

◆ Outcome is a physical attribute generated from an experiment, and is 
associated with a data type (e.g., number of points, color, etc.)

◆ Abstract the outcome into a real number would make it convenient for 
further processing and discussion without tying to any specific 
experiment

◆ Mathematic operation can be easily taken on a real number (On the 
other hand, how can we time a “blue color” by 2?)

✦ For example, Y = |X|, X and Y are RVs

✦ Another example: Normalized target sentence length (in bilingual
sentences alignment)

( ) ( ) ( )
( )12

2

2
11221

/ of  variance&mean  :,

1,0~/,

llsc

Nslcllll ⋅⋅−=δ

2002/08/17 Keh-Yih Su / Jing-Shin Chang      Statistical NLP    D1-Part-III 18

Multinomial Distribution

■ Example: throw a dice six times, get {3, 6, 2} 
�

2, 1, 3 times

■ Example: likelihood of part-of-speech sequence in a text

■ Probability distribution:
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Mean and Variance

■ Mean:

◆ An indication for the central location
◆ Example: binominal distribution: E[X] = np (flip the coin n times 

with x H’s)
where

■ Variance

◆ An indication for the degree of spreading
◆ Example: binominal distribution: Var[X] = np(1-p)

[ ]
( )

( )

(d isc re te)
E X

(contin uou s)

i
i ix

X

R

x P x

x f x dx
µ

= = 


∑
∫

( )
( ) ( )

( ) ( )

2

X22
X 2

X

(discrete)
E X-

(continuous)

i
i ix

X

iR

x P x

x f x dx

µ
σ µ

µ

 − = =   −

∑
∫

( ) ( ) )N}0{(x   1,; 1 +− ∪∈−




= xx pp
x

n
pnxb

2002/08/17 Keh-Yih Su / Jing-Shin Chang      Statistical NLP    D1-Part-III 20

Covariance and Correlation Coefficient

■ Covariance:
◆ The covariance CXY of two random variables X and Y  is defined as 

follows:

■ Correlation Coefficient:
◆ The correlation coefficient �

XY of two random variables X and Y is 
defined as follows:

◆ Un-correlated: � = 0
◆ E[XY] = E[X] x E[Y]  => � = 0.
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More on Correlation Coefficient

■ Correlation does not imply Causality
◆ Causality: IF X-Event, then Y-Event. P(Y|X) = 1 > P(Y) > P(~Y|X) = 0
◆ Example: “Lung-Cancer” and “Buy-Cigarette” are correlated, because 

they come from the same source of “Smoke”; however, no causality 
remained between these two events

◆ Causality can let us have conditional independent form: P(Lung-
Cancer, Buy-Cigarette | Smoke) = P(Lung-Cancer | Smoke) x P(Buy-
Cigaratte | Smoke)

■ independency imply un-correlatedness
◆ P(A | B) = P(A)

■ Un-correlatedness does not imply independent
◆ It is possible that a non-linear dependent case has � = 0
◆ Example: X ~ zero mean Gaussian, Y = X2

◆ However, if X and Y are bivariate Gaussian, then this statement holds
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Parameter Estimator

■ Statistic: 
◆ A statistic is any real or vector-valued function of the observation (T(X)).

✦ e.g. X: Head/Tail of a fair coin; T(X1, …, Xn): number of heads

■ Estimator:
◆ An estimator is a statistic calculated from sample data that provide 

either point estimates or interval estimates for some parameters. 
Usually, the term “estimate” is used to denote its associated value

◆ Coin example: p(H) = k/n
◆ Tagging example: P(n | det) = [# of det-n] / [# of det]

■ An estimator is a function of a RV, and can be regarded as a RV 
itself

◆ Estimator variance (i.e., estimation accuracy) depends on  the size of 
the sampling data: proportional to 1/n
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Parameter Estimation

■ All probabilistic parameters are estimated from a finite set of 
samples.

◆ Some criteria of a good estimator: unbias, consistent, efficient (see 
appendix for the definition).

■ Some frequently used estimation methods:

◆ Maximum Likelihood Estimation (MLE)

◆ Least Square Estimation

◆ Bayesian Estimation
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Maximum Likelihood Estimation

■ To choose a set of parameters 
�

in a way that maximizes the 
likelihood function L( � ) :

◆ where x1,x2,…,xn is a set of random samples from the distribution of 
a random variable X with density f and associated parameter � .

■ The ML estimation                              is the set of estimated 
values that maximizes L( � ), or values that satisfies the 
simultaneous equations
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MLE Examples:

■ The MLE for the part-of-speech probabilities:

■ can be interpreted as the relative frequency of 
occurrence over the n words (parts of speech).
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MLE Examples (Cont.):

■ Normal (Gaussian) distribution with parameters: mean � and 
standard deviation �

■ The MLEs for the mean and variance of the normal density are:

( )
1

22

1

1
ˆ

1
ˆ

n

M LE i
i

n

M LE i
i

x x
n

x x
n

µ

σ

=

=

= =

= −

∑

∑

2

2

2

)(
2

2

1
),;( σ

µ

πσ
σµ

−−
=

x

exN



14

2002/08/17 Keh-Yih Su / Jing-Shin Chang      Statistical NLP    D1-Part-III 27

Stochastic Process

■ A stochastic process  { X( t) ,t ∈T }
◆ is a collection of random variables; i.e, for each t ∈T, X( t) is a random 

variable (a family of RVs).
◆ Where T is the index set of the process (e.g., time-index or word-

position)
◆ { X( t)} is a discrete-time process, if T is a countable set; e.g., {Xn,n=0,1}

■ Interpretations:
◆ A stochastic process X( t) = X( t, ζ) is a single time function (a sample 

of the given process) if ζ is fixed.
◆ X( t, ζ ) becomes a random variable equal to the state of the given 

process  at time t, if t is fixed.
◆ If t and ζ are fixed, then X( t, ζ ) is a constant.

■ Tagging example
◆ {C(1) = noun, C(2) = verb, …, C(n) = pron}: C(t): part of speech 

generated sequentially at time t (or position t)
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Markov Chain

■ A discrete-time discrete-state stochastic process {Xn,n=0,1,…}, 
having the property that given the present state, the past states 
have no influence on the future, is called a discrete-time Markov 
chain.

◆ For example, we only need today’s data to predict tomorrow’s weather

■ The Markov property:
◆

◆ are called the transition probabilities of the 
chain.
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Markov Chain (Cont.)

■ Example: The formula for tagging part-of-speech is approximated 
as:

◆ where ti corresponds to the part-of-speech attached to the i-th word wi. 

◆ The probability P( ti | ti-1 ) in the above formula is the transition 
probability of the assumed Markov model.

■ Note, X(i+1) and X(i-1) are still correlated

◆ Conditional independence does not imply independent
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Self-information & Entropy 

■ Self-information I( xk):

◆ One desired property: information of two independent events should 
be the sum of the associated information of each individual event. It is 
the Log function that can satisfy those properties

◆ I( xk)= -log P( xk)
◆ I( xk) is the amount of information (or uncertainty) associated with the 

known occurrence of output xk.

■ Entropy H(x) :

◆ H(x) is the average information (or uncertainty) of the source X.
◆ Word segmentation example (Left Context Entropy):
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Conditional Entropy

■ Conditional Entropy:

■ Chain Rule:
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Mutual Information

■ (Specific) Mutual Information I( X; Y):

■ I( X; Y) is the mutual information between X and Y.

■ Example: Use I(wx; wy) as a measure for the preference of 
"strong economy" and "powerful economy" [K. Church 89]:

■ I(wx; wy) >> 0 , wx and wy are highly associated.

■ I(wx; wy) 
� 0, wx and wy are independent.

■ I(wx; wy) << 0, wx and wy are in complementary distribution.
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Entropy and Mutual Information

■ Relation between (Average) Mutual Information and Conditional Entropy

■ I(X;Y): change of uncertainty about source symbol X with/without
observing Y (through a noisy channel or not); that is, extra information 
from Y

■ I(X;Y) = 0 
�

H(X|Y) = H(X) (independent, no extra information by knowing 
Y)

( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( )∑ ∑












⋅=

−=−=

X Y
ji

ji
ji

yPxP

yxP
yxP

XYHYHYXHXHYXI

,
log,

||;

P(X)
[source]

P(Y|X)
[channel]

X Y

2002/08/17 Keh-Yih Su / Jing-Shin Chang      Statistical NLP    D1-Part-III 34

■ The perplexity is a measure of the constraint imposed by the 
grammar, or the level of uncertainty given the grammar.

■ Let P( w | s) be the probability that w will be the next word when 
the current state is s.

◆ The entropy Hs(w), associated with state s is

◆ The entropy H(w) of the task is the average value of Hs(w) , i.e.

◆ where � (s) is the probability of being in state s during the 
production of a sentence.

Perplexity

( ) ( ) ( )[ ]∑ ⋅−=
w

s swPswPwH |log| 2

( ) ( ) ( )∑=
s s wHswH π
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Perplexity (Cont.)

■ The perplexity S(w) of the task [Bahl 83]:

■ In Practice, define logprob (LP) as [Jelinek 97]:

◆ In above equation,                                            will be replaced by your 

adopted language model (e.g., bi-gram or tri-gram)

■ And Perplexity is defined as:  

( )1 1
1

1
lim log , ,

n

i in
i

LP P w w w
n −→ ∞

=

≅ − ∑ �

( ) ( )wHwS 2=

2 LPPP ≅

( )1 1, ,i iP w w w −
�
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■ “max” and “argmax” operators

◆ “max”: the maximum value among given members

◆ “argmax”: the associated member index of the member that 
possesses the maximum value

■ Maximum Likelihood Classifier : find the model that has the 
maximal probability to generate the observed features 

Where f is the feature vector with dimensionality of d.

Bayesian Classifier

( )1
ˆ arg max |

i

d
i

M

M P f M=
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■ Bayesian classifier: find the best model based on given features

◆ If the model is correct, it can achieve the minimum error rate; however, 
it is not the only classifier that can achieve the minimum error rate

◆ If priori probability is uniformly distributed, it becomes Maximum 
Likelihood Classifier

■ Tagging example:

Bayesian Classifier (Cont.)

( ) ( ) ( ) ( )
( ) ( )ii

d

M

d
ii

d

M

d
i

M

MPMfP

fPMPMfPfMPM

i

ii

|maxarg

/|maxarg|maxargˆ

1

111

=

==

( ) ( ) ( )nnn

c

nn

c

n cPcwPwcPc
nn

111111 |maxarg|maxargˆ
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Elements of Parameter Learning

■ Parameter Learning: Statistical Language Model + Training 
Corpus + Parameters Estimators

■ Training Corpus: known instances used for learning
◆ The information source used to learn the desired knowledge
◆ The amount of implied Information is related to the Corpus Size and 

the Degree of Annotation (if under the supervised learning mode)

■ Parameter Estimation Error
◆ The estimated parameter is a statistic measure based on a set of

finite samples

✦ Has estimation errors as other statistics do

✦ Values obtained from different sets of data (e.g., training set and testing 
set) are usually different

◆ Variance of parameters (i.e., estimation accuracy) depends on  the 
size of the evaluation corpus: proportional to 1/n
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Data Set Classification (1)

■ Training Set
◆ The data set used to obtain model parameters
◆ Performance measured in the training set reflects the model capability 

to fit available training instances

■ Testing Set
◆ A data set which is independently sampled other than the training set 
◆ It is mainly used to measure the true system performance in the real 

world, which also reflects the model capability to fit other instances in 
the real world

◆ Testing set is frequently implicitly tuned without awareness
◆ Development Testing Sets and Real Testing Set (testing set can still 

be implicitly tuned)

■ Cross-Validation Set
◆ Another set of data which is independently sampled other than both 

the training set and the testing set
◆ It is mainly used to help making design decision (e.g., model 

complexity adopted, etc.)
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Data Set Classification (2)

■ Why testing set

◆ The performance measured in the training set is generally over-
optimistic (which could be resulted from over-fitting, or over-tuning). 

✦ 100% accuracy is possible if the number of parameter is greater than that 
is needed

✦ Over-fitting usually occurs when the number of training data is not enough 
to support the model complexity adopted

✦ Over-tuning happens during the adaptive learning process while we have 
too many adjustable parameters that we can afford

◆ We need another independent data set to reflect the true performance 
when the customer deploys the system in the real world 
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Data Set Classification (3)

■ To keep the testing set away from contamination, it is not allowed 
to see (or involve) the details in any design/training phase

◆ You cannot use it to decide the suitable model complexity, 
dimensionality of the feature space, or when to stop during the 
adaptive learning process

◆ Design decision should be made on the cross-validation set

■ Adopt a new testing set after every certain period

◆ When you compare various approaches and try to select one with the 
best testing set performance, the performance has already implicitly 
tuned on the testing set
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Data Set Classification (4)

■ Why Cross-Validation Set

◆ Bad training set performance normally implies methodological flaw, 
so we can immediately know that we must re-do the design

◆ In contrary, good training set performance may result from:

✦ A really good model (which will also get good testing set performance)

✦ An over-fitted model (which will give bad testing set performance)

✦ A set of over-tuned parameters resulted from the adaptive learning 
process (which gives bad testing set performance too)

◆ As the testing set is not allowed to be used to help making design 
decision, we cannot disambiguate the above situations

◆ We need another independent set of data to provide a simulated 
testing test performance to help us making design decision
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Performance Evaluation

■ Performance is estimated from a set of finite samples (also a 
statistic measure) 

◆ Has estimation errors as other statistics do

◆ Variance of performance measure (i.e., estimation accuracy) 
depends on  the size of the evaluation corpus: proportional to 1/n

◆ Values obtained from different sets of data (e.g., training set, cross-
validation set, and testing set) are usually different
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Performance Criteria

■ Contingency Table

■ Error rate (E), precision (P), recall (R), and F-measure

◆ E = number_of_incorrect_identification / total_number_of_instances
= (N12+N21) /  (N11+N12+N21+N22)

◆ P = number_of_correct_identification / number_of_candidates_in_list
=  N11 / (N11+N21) 

◆ R = number_of_correct_identification / number_of_correct_instances
=  N11 / (N11+N12)

◆ F-measure (beta = 1): 2PxR/(P+R)

N22N12-

N21N11+Predicted 
Label

-+

Real Label1st class:”+”
2nd class: “-”
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Performance Evaluation Methods (1)

■ Re-substitution Estimate:

◆ Use the same set of samples to design and test a model (training
set performance, or close set performance)

■ Holdout Estimate:

◆ Use two mutually exclusive sets of samples to design and test a 
model

◆ Testing set performance, or open set performance

◆ Less data is left in the training set; thus it would result in a worse 
system

◆ The true testing set performance would be deteriorated, although
its value can be more accurately estimated
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Performance Evaluation Methods (2)

■ Leave-one-out Estimate:

◆ Use one sample for testing and the other samples for design; test 
the model in rotation for each single sample, then report the 
performance by averaging the obtained result

◆ Retain the largest amount of training set data (thus have the best 
model) while provide the most accurate testing set performance 
measure

◆ Very time-consuming, as it demands to repeat the design process 
N times
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Performance Evaluation Methods (3)

■ Rotation Estimate (v-fold cross validation):

◆ Use one subset of the samples for testing and the other subsets for 
design; test the model in rotation for each subset

◆ Example: 10-fold rotation
✦ 1. Divide all data (D) into 10 subsets of equal size: D = D1 U D2 U…U D10

✦ 2. For Iteration I =1 to 10:

• use Di as testing set, D-Di as training set, and evaluate testing set 
error rate Ei

✦ 3. Report the estimated error rate as: (E1+E2+…+E10)/10

◆ A compromise between achieving better true testing set performance 
and obtaining more accurate measure on that

2002/08/17 Keh-Yih Su / Jing-Shin Chang      Statistical NLP    D1-Part-III 48

Performance Upperbound

■ Even human does not completely agree with each other

◆ Different groups of people would make different Golden Data Sets

◆ The agreement between humans will be the upperbound for the 
performance of our systems

■ Human Agreement Check: Kappa Statistics [Carletta, 96]

◆ K = [ P(A)  - P(E) ]  /  [ 1 – P(E) ];  0 <= K <= 1

✦ P(A): the proportion of times that the coders agree

✦ P(E): the proportion of times that we expect them to agree by chance

◆ K > 0.8, good reliability

◆ 0.67 < K < 0.8, allowing tentative conclusions to be drawn
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Traps to Avoid

■ Compare two event probability in two different outcome spaces

◆ Example: compare P(f1 | M1) with P(f2| M2).

◆ Usually happen during model simplification after Bayesian formulation 
has been adopted

■ Abuse of the approximation operator (the following two equations
are in wrong expression)

( ) ( ) ( )
1 1

1 1 1 1ˆWrong:  argmax | argmax | |
n n

n n n
i i i ii

c c

c P c w P w c P c c −= ≈ ∏

( ) ( ) ( )1 1 1Wrong:  | | |n n
i i i ii

P c w P w c P c c −≈∏
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Traps to Avoid (Cont.)

■ Blind Attempt

◆ Try a popular method for every problem without knowing what is the 
characteristics of the problem and why this approach should be 
adopted

✦ “If you have a hammer, then everything looks like a nail”

✦ Since many different approaches have been tried to the same testing set 
(or have tried the same popular approach to different problems), the 
testing set performance, in some sense, has already been tuned (i.e., 
biased)

◆ Regard every linguistic symbol as just a symbol of “X1”, “X2”, etc.

✦ Without knowing the linguistic meaning of each symbol, it has only little 
chance that you will come out with a good design
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Tips to Keep in Mind

■ Forms (the relationship between candidate and various features) 
are more important than the way to estimate the associated 
parameter values (once any reasonable approach has been 
adopted)

◆ What kinds of features should be adopted is the most important issue
◆ Don’t mix up the outcomes (i.e., generate overlapping classes in 

feature space by ignoring the important cue), and then try to clean it up 
later

◆ Dependency between different features should be carefully expressed 
in your model.

■ A good language model (feature space plus dependency 
relationship) with a simple parameter estimation method is better 
than a bad language model with a more complicated parameter 
estimation approach (such as ME, SVM, etc.)


