Part Il: Basic Concept for Unsupervised Learning

= Learning Model from Partially Observable Features

0 How to train a model in which not all the values about its features adopted
are known in the training set?

What kind of Parameters are Learnable?
0 Given sufficient training data, what kind of parameters can be learned?

Maximum Likelihood Estimation (MLE)
0 How to obtain those parameter under unsupervised learning ?

Performance Issues

0 Mismatch between the criteria of maximum likelihood and minimum error
rate, and between the performance of the training set and the testing set

m Performance versus Corpus Size & Model Complexity
0 General trend for the performance we can obtain
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Learning from Partially Observable Features (I)

= Incomplete Data Space:
0 All observable features in the training set are in the incomplete data space.

0 The incomplete data space only contains the partial information about those
features that will be adopted in the model.

s  Complete Data Space:
0 All features that will be adopted in the model are in the complete data space.

0 The feature vector in the incomplete data space is mapped from the
complete data space (with usually a many-to-one relationship).

0 In many cases, people have to infer parameters of complete data space
from the sample space of incomplete data.
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Learning from Partially Observable Features (II)

= Unsupervised-learning: learning model in the complete data
space through the features in the incomplete data space

0 Under supervised-learning, all the features involved in the model can be
directly observed in the training data

o For example, both “Words” and their associated “Tags” can be seen in the
annotated corpus for the statistical tri-gram tagging model

0 Under unsupervised-learning, not all the feature values are known in the
training data

o Only “Words”, not their associated “Tags”, can be seen in the un-annotated
corpus for the above statistical tri-gram tagging model

0 The feature vector in the complete data space contains all the feature
elements adopted in the model, although part of them are missing from the
training data
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Learning from Partially Observable Features (lll)

s Example [Dempster 77]

0 197 animals are multinomially distributed into 4 observable categories (in
the incomplete data space); however, they should be divided into 5
categories according to their true genetic model (in the complete data
space). Please see Part Il for details.

0 Incomplete Data Space: [y1, y2, y3, y4]
0 y=(Y1, Y2 Y3 ¥a)=(125,18,20,34).

0 cell probabilities: (1/2+1/4x, 1/4(1- =), 1/4(1- =), 1/4x) [with one parameter =]
+\v. 4+ v+ ) Y Y ¥3 Ya
=S L (4 1L 3
vivivyl\2 44 4)(a 4 )4
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Learning from Partially Observable Features (IV)

s Example [Dempster 77] (cont.)
0 Complete Data Space: [X1, X2, X3, X4, X5]

0 cell probabilities: (1/2, 1/4=, 1/4(1- ), 1/4(1- ), 1/4x) [with one parameter =]
0 Yy, = X+X,, €.9., (125, 0), or (124,1), or ... Note: (X1, X2) => Y1: many-to-one
mapping. y, = Xz , Y3 = X4, Y4 = Xs.

L rivatlclorslerslty
xIxIx¥x \2/\4/\44)\44)\4
0 Given Y1=X1+X2, both are drawn from multi-nominal distributions sharing

the same parameters, we guess the values of x; and x, (might be non-
integer)

1 m
x,=125—2 _ x,=125—4% ;. 7' =0.6268
& 1 m'"2 1 m’ :
—+ —+
2 4 2 4
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Learning from Partially Observable Features (V)

= NLP Example: part of speech tagging

0 Find the appropriate tag sequence c¢;" (=C;, Ca..., C,;), t0 be associated with
the given word sequence w," (=w;, W,,..., W,), in the training corpus. Please
see Part | for details.

0 Incomplete Data Space: the given word sequence w;"

0 Complete Data Space: both the given word sequence w;" and its associated
tag sequence c;" (=cy, Cy,..., Cp)

0 Given a word “design” that has two possible tags {noun, verb}, is it possible
to know the real tag of “design” in a particular context from a large number of
instances of “design” in the given untagged corpus ?

o Note: {noun, verb} => “design”: many-to-one mapping
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Why build model on the features that we don’t know
their values?

= Sometimes, the model in the complete data space is more
suitable for the real situation

0 Example: the above genetic problem

= Or, the unobservable features are happen to be the ones that
we are really interested

0 Example: POS in tagging problem
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Why build model on the features that we don’t know
their values (cont.)?

= Last, in many cases, introducing more intermediate parameters
(and then conditioning on them) help to decompose the original
problem into a set of more manageable and simpler sub-
problem

0 This is the divide-and-conquer strategy

0 Examples:

o Intermediate forms (e.g., parse tree and semantic form) adopted in the model of
Corpus-Based Statistics-Oriented (CBSO) Machine Translation System

PTISA)=Y RTISA=ZY 1L SN)x O

o States in the Hidden Markov Model (HMM) adopted in the task of speech
recognition

PIn)=3 Hd.SIN)=3 R SN)x PSA)
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What kind of Parameters are Learnable (I)

m Learnability Issues [Duda & Hart 73]
0 Learning parameters from unlabelled data is possible for many cases, BUT

0 Learning parameters may not always stop at the best desired parameter set
even though the likelihood value is maximized

n Parameter Learning & Identifiable Issues

0 Most learning methods assumes that observed data x was drawn from a
distribution p(x|0) of known form (statistics structure) with a set of
parameters 6

0 Statistical learning is to uncover the parameter set 6 by estimating their
values via maximum likelihood estimation.
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What kind of Parameters are Learnable (I1)

m Parameter Learning & Identifiable Issues (cont.)

0 A parameter set 6 is identifiable (or, learnable) in the specified feature space,
if for any other 0’ \=0 , there exists at least an x such that p(x| ) \= p(x | ’).

o We are unable to identify the true parameter set 0, if each element in a specific
sub-set in the parameter space shares the same likelihood function.

o If a parameter set 0 is not identifiable, then we will have a collection of global
optimum points in the parameter space (with equal maximum likelihood value)

o Situation might change when we adopt different feature spaces or models.

0 Most mixtures of commonly encountered density functions are identifiable

0 Mixtures of discrete distributions are not so obliging
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What kind of Parameters are Learnable (l11)

= Example of Unidentifiable Distribution [Duda & Hart 73]

p09) = " e L 0,7+ H2) of- L

0 p(x|9): is not identifiable if P(w,) =P(w,)
o 0, and 0, can be exchanged without affecting the distribution

o <0, 0,>has non-unique solutions even though the one(s) with maximum
likelihood value could be found by any searching or learning method

0 p(x10): is identifiable, if P(w,) \=P(w,)
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What kind of Parameters are Learnable (1V)

s Example: Bigram model for POS tagging

= {P(w| 0, A Ggn | &« )for all possible combinatio%!s

P(WIA)=5 AW, CIA)

gPMMA RSN

= g{ﬂ P(wlc)x ¢l r:_l)}

0 P(w;"|A) is not identifiable for many possible w;".
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Multiple Local Maximum Points (1)

m The Log-likelihood function of the K-parameters Exponential
Families has only one global optimum point in the parameter
space; thus they are identifiable

0 K-parameters Exponential Families include many functions that we are
familiar, such as Gaussian, multi-nomial, etc. [Bickel 77]

P(X.Q):{ex ZG(@)T(X)+ dé)+ X)]} A(X

20° 2

2 2
P(X,0) = exp{g x- 2 1[52 + log@rno® )H for Gaussian case.

0 Log-likelihood function of the K-parameters Exponential Families is a convex
function
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Multiple Local Maximum Points (I1)

= Mixture density functions, such as above examples, are not
belong to those families

0 In general, they have several local optimum points in the parameter space.
0 They even might have several global optimum points in the parameter space

= However, we do not really worry about this issue in NLP tasks,
because we usually only search for the nearest local maximum
(not even for the unique global optimum point)
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Multiple Local Maximum Points (111)

= Example
b(xI6) = 'j/(z%) exp{—;(x—el)z]+ F:;;i;) ex%—;(x—ez)z}

0 Unsupervised learning with Maximum Likelihood Estimation would produce
two local maximums (two global optimum points if P(w;) = P(w.,))

2nd solution mixture density
; Lst solution

Estimate of Mixture Density
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Differences between Supervised and Unsupervised
Learning

= Supervised:
0 Features adopted by the Language Model are completely observable

0 Both Observation and Model are in the same Complete Data Space

= Unsupervised:
0 Features adopted by the Language Model are not completely observable

0 Observationis in the Incomplete Data Space; however, the model is in the
complete data space

= Supervised learning is more efficient than unsupervised learning

0 Supervised learning generally will have better performance given the same
amount of training data
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Maximum Likelihood Estimation (MLE)

m The parameters in the statistical language model are usually
estimated via Maximum Likelihood Estimation (MLE) method

0 MLE find the point in the parameter space that has the maximum likelihood
to generate the all observations.

0 Log Likelihood function: Log p(x|6) = Loq_l f(x,0)= z Log f( x0)
1= 1=1

0 MLE is usually conducted on the Log Likelihood Function (a monotonic
mapping)

0 Multinomial; p(X|9) = 9;‘19'2(29'3‘3, @iM'-E :ﬁ_

n
p(x716) = I_j ﬁ eXP{- 2;2 (% —u)z} :

0 Gaussian: u N 2
X (%-%)
~ —_ =1 A2 —_ =1
Hye =+ O'we =
n '’ n
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Maximum Likelihood Estimation (cont.)

= Using relative frequency as the estimation may introduce
estimation error for entries that occurs very infrequently or
unseen parameters
0 Zero occurrence results in zero probability.

0 Result poor performance in the testing set if the size of the training set is
very limited

»  MLE approaches achieve the recognition implicitly and indirectly
through the estimation process; thus
0 Recognition (or disambiguation) is done through the formula:

C=argmaxP(Q G A)
c

0 Maximizing likelihood is not equivalent to minimizing the error rate in a
training set.

1999/12/10 Keh-Yih Su / Jing-Shin Chang, Behavior Design Corporation - Part Il

18




Performance Issues (1)

= Model Fitting vs. Recognition:

0 Unsupervised learning picks the candidate by comparing the fitness of
various models to the observations, measured by likelihood value, of
different candidates.

0 Disambiguation is thus done indirectly through comparing the fitness of
various models.

0 Motivation for above approach:
o Baysian classifier is the minimum error rate classifier

o If we approach the true density function by refining the model (choosing better
form and adopting better estimation method), we can obtain the best
performance
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Performance Issues (II)

= Model Fitting vs. Recognition (cont.):

0 However, this indirect approach does not utilize the data efficiently in many
real situations:

o The form of the true density function is not really known (the true density function
might not be manageable even the form is given)

o The deviation of the estimated density function off the decision boundary does
not affect the performance (so why we should bother about that?)

o Training data is limited, and the ones that really affect performance are those
that are near the decision boundary (i.e., the classes separation plane); those
data that are far from the decision boundary might even bring in adverse effect.

o Although Baysian classifier gives the best decision boundary, it is not the only
way to find that.

o Any classifier that can find the best decision boundary also deliver the best
performance.
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Performance Issues (lll)

= Model Fitting vs. Recognition (cont.):

The point, in the parameter space, obtained from MLE might not be the point
that can minimize the error rate

It is actually the correct ranking order of the desired candidate, not the
parameter estimation error, that we really care.

o Afeature that fit every class well might add nothing to our performance

o Itis the competition among different candidates, not how well each candidate
performs, that really matters.

Directly pursue the minimum error rate (in the training set only) is called
Discriminative Training [Juang 92]
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Performance Issues (IV)

= Training Set Performance versus Testing Set Performance

u]

O

The effect caused by the estimation error is not unveiled in the training set

The parameter obtained from MLE in the training set might not be the MLE
point we will get from the testing set

The modeling error manifested in the training set can always be reduced by
increasing the model complexity or through refining the model parameters
(via adaptive learning).

However, the modeling error usually compete with the estimation error in the
testing set (not in the training set)

Robustness issue addresses the problem about how to achieve the similar
performance in both the training set and the testing set.

Usually simpler models and less refined models are more robust
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Performance Issues (V)

» Performance of learning (especially unsupervised) is thus
greatly affected by:

0 Discrimination power associated with the adopted model
o Which is the capability to achieve the minimum error rate in the training set

0 Robustness of the model:

o Which is the capability to overcome the characteristics variation between the
training samples and the data in the real world (testing set)
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Performance Trends versus Training Corpus Size

»  Problems of Corpora with Small size

0 Estimation Error: Training Set Performance /= Testing Set Performance

100%4 ..
Training Set
(D] \
O
o
< /
£ .
S Testing Set
(D]
[
mall corpus : large corpus
>
Training Corpus Size
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Performance Trends versus Module Complexity

= Problems of Models with High Complexity

0 Although increasing the Model Complexity can reduce the modeling error in
the training set (thus reducing the error rate in the training set), it does not
increase testing set performance without limit

100%4

Performance

ow complexity: high complexitz
»

Model Complexity
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