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Part I: Introduction

= Knowledge Acquisition in NLP
0 Tasks in NLP, Knowledge Representation Form

m Statistical Parameter Learning
0 Parameter learning, and why statistical parameter learning

=  What is Unsupervised Learning
0 Characteristics & differences with supervised learning

= When Should Unsupervised Learning Be Used
0 Problem characteristics and suitable situations for unsupervised learning

= Why Unsupervised Learning is Becoming Popular
0 environmental factors & shift of paradigm

1999/12/10 Keh-Yih Su / Jing-Shin Chang, Behavior Design Corporation - Part |




Knowledge Acquisition in NLP (1)

m Tasks for Building NLP Systems

0 Knowledge Representation
o How to organize and describe linguistic knowledge

0 Knowledge Control Strategies

o How to use knowledge for
« efficient analysis
« ambiguity resolution
« ill-formedness recovery

0 Knowledge Acquisition

o How to systematically and cost-effectively set up knowledge bases, and
o maintain knowledge base consistency

0 Knowledge Integration
o How to jointly consider various knowledge sources effectively
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Knowledge Acquisition in NLP (I1)

m» The task of Knowledge Acquisition is usually the bottleneck

0 Language usage is complex (not governed by any elegant model), and
dynamic (changing with different groups, locations, and time)

Required knowledge is huge, messy and fine-grained
Inducing rules by human is usually very expensive, and time-consuming

Traditional rule-based approaches are very hard to ensure global
improvement, even if it is possible

0 Seesaw phenomenon is generally observed

= Knowledge can be represented in different Forms
0 Knowledge can be represented either explicitly (such as rules) or implicitly
(such as parameters).
o Example 1: IF C, is Det, then C, cannot be a Verb
o Example 2: P(C;= Verb| C_,= Def) =0
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Knowledge Acquisition in NLP (111)

m The Task of Knowledge Acquisition is closely coupled with the
Knowledge Representation Form

0 Change the Knowledge Representation Form also change the way to
acquire knowledge

m Consider the Knowledge Representation Form from the
Knowledge Acquisition point of view
0 What kind of knowledge is suitable for machine learning?

o Simple, uniform, easily to be derived from those observable data

o Large quantity (once the number is large, even a collection of simple units, must
be self-learnable, can also appear with smart behavior; for example, neurons
and IBM Deep Blue, etc.)

o Parametric form is most suitable for machine learning

0 Learning abstract forms (e.g., model) has not demonstrated its success in
machine learning yet
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Knowledge Acquisition in NLP (1V)

» Integrated Approach is better for Knowledge Acquisition (also
classified as hybrid-approaches by some researchers)

0 Human derives parametric language model which possesses a lot of
parameters

0 Parameter values are acquired from machine learning

0 The most promising approach in the next century
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Types of Machine Learning
(according to types of knowledge acquired):

= Symbolic: learning symbol relationship
0 Including: patterns, grammars, rules, decision trees, frames, networks, etc.

0 Example: Grammar Inference, Transformation Tagging [Brill 1994]

0 Advantages:
o flexible,
o acquired knowledge is compact and easy to interpret,
o easily fit in existing linguistic theories

0 Disadvantages:
o relatively awkward in dealing with complex and irregular decision boundary,

o usually unable to achieve the best performance

0 Suitable for handling compact and regular situations
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Types of Machine Learning (cont.):

m Parametric: learning parameter values under known parametric
forms
0 Including: Neural-Net (learning weighting coefficients), statistical Language
Model (learning statistical parameters), etc.

0 Example: Statistical Tri-gram Tagging Model [Church 1988]

0 Advantages:
o acquisition mechanism is uniform and simple,
0 quantitative measure can be provided,

o adaptability is high (provide good parameterized systems that can be controlled
easily through various feedback mechanisms),

o capable to achieve the best performance
0 Disadvantages:

o parameter size is large,

o acquired knowledge is not intuitive

0 Suitable for handling complex and irregular situations
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Why Parametric Learning (1)

= NLP requires fine-grained knowledge

0 Inherited characteristics from the given problem

o Different classes just don’t have clean and regular separation boundaries
between them

0 Alot of local descriptions are required
0 Huge messy knowledge required simple control mechanism to manage
0 Parametric approach is the ideal candidate

= Unsupervised-learning is the preferred operating mode in many
different situations
0 Supervised-Learning requires annotating the corpus which is not affordable
in many cases

o Most symbolic learning algorithms operate only under the supervised-mode (l.e.,
the features based on which rules are induced must be observable)

0 Unsupervised Learning is not easy to go with symbolic approach
o Un-supervised learning requires an objective measure to tell it where to go
o Itis difficult for symbolic learning to provide such an objective measure
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Why Parametric Learning (II)

»n Further Performance Push requires Quantitative Knowledge

0 Refined models required quantitative information in almost every fields (e.g.,
F=ma)

0 Detailed study unveils non-deterministic phenomenon
o Non-deterministic is kind of quantitative knowledge

0 Quantitative model can outperform qualitative model
o Qualitative model is a special case of the corresponding quantitative model

0 Symbolic approaches are not the suitable ways to provide the required

guantitative knowledge
o Rules only make Go or No-Go decision (l.e., a Hard-Rejection approach)
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Why Parametric Learning (III)

=» System Performance is the ultimate goal

0 Computer Memory and raw power are no more the issues

o As Moore’s Law keeps going, we only care about the scarceness of human
resources not that of computer

o Computer resource required for parametric learning is no more a constrain

0 Human power required for operating the system greatly depends on the
system performance (e.g., Machine Translation, OCR, telephone switching
system, etc.)

o Thatis why we care about the error reduction rate (advancing from 98% to 99%
makes sense)

0 Parametric approaches are more promising for delivering better
performance
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Neural-Net (or Connectionist):

= Learning weighting coefficients associated with those
connection-links between neurons (a black-box approach): a
universal approximator

= Input is usually a fixed-dimension static pattern

= Advantages:
Provide a quick solution: extensive problem analysis is not required
The mechanism is simple and easy to understand: a weapon for everybody
Suitable for real-time applications (architecture for parallel processing is
implied)
0 Directly minimizing the error rate
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Neural-Net (cont.):

= Disadvantages:

u]

Not easy to handle the feature whose dimensionality dynamically varies
(e.g., number of terminal-symbols under a constitute)

Not easy to handle the candidate of hierarchical structure with varying depth
(e.g., linguistic constitutes), or the process with flexible duration (e.g.,
speech syllable)

Learning process is inefficient: requires relatively large amount of training
data, and convergence period

Generalization capability is usually poor when training data is not abundant

Without truly understanding the problem, further improvement is difficult
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Statistical Language Model (1):

= Learn those statistical parameters implied by the model (a
glass-box approach)

= Advantages:

u]

Decisions based on Bayesian classifier has a direct link with minimum error
rate performance: the most promising approach to deliver the best
performance

Supported by well-established statistics theories: we know why and how to
improve the performance by using a lot of existing techniques
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Statistical Language Model (l1):

= Advantages (cont.):

0 Problems can be easily decomposed into more manageable and simpler
explicit sub-problem (by introducing more intermediate random variables
and then conditioning on them; using the theorem of total probability and
multiplication rule)

o Example: Machine Translation [Su 1995]

P(TIS) = Z KT 1S
=2 P(T. PT(D), NFL(}), NF2 (i), NF2,(}), NF1(), PT(}[S)
0% (P(T PT() < A PTOH NRL())x R NRL()I NR())]-+(9
[ P(NF2 (i) NF2,(i))] (2
x[P(NFZS(i)|NF15(i)) x P(NFL{i)|PT{ ) x P( P'I;(i)|$)]} ++(3)
where: S: source sentence, T: target sentence, I: intermediate normal forms
I ={PTi), NF1(i), NF2,(i), NF2,(i), NF1(i), PT(i)}, in which

PT: parse tree, NF1: normalized syntax tree, NF2: normalized semantic tree
(1) = generation score (2) = transfer score  (3) = analysis score

0o o o o

1999/12/10 Keh-Yih Su / Jing-Shin Chang, Behavior Design Corporation - Part |

17

Statistical Language Model (111):

= Advantages (cont.):

0 Provide direct and flexible control to support those hierarchical internal
structures (i.e., intermediate forms)

0 Model is more extendable (respect to model complexity) and scalable
(respect to dimensionality of feature space) with the advancing of problem
understanding and modeling

= Disadvantages:
0 Require statistical knowledge and modeling capability

0 Require problem analysis stage

0 Require an additional discrimination learning stage to compensate criterion
mismatch
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Why Statistical Parametric Learning (1)

= More suitable for unsupervised learning

0 Unsupervised Learning other than clustering is difficult with Neural Net
approach

= More suitable for NLP application

0 Linguistic constitutes are not fixed-dimension patterns. They have
hierarchical structure with varying number of terminal nodes and depth

0 Non-deterministic nature of NLP requires multiple candidates to be
generated in early stages

0 NLP is usually a multi-stage process: we need more direct control over
those intermediate forms
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Why Statistical Parametric Learning (Il)

= More promising to deliver better performance
0 Better results have been reported

0 With the aid of modeling, statistical approach is promising in generating
better performance given the same fixed amount of training data (more
efficient in data utilization)

o With respect to the inherited complexity in NLP, the amount of available training
data is still too limited (not enough to support those brute force approaches)

o Model forms various equivalent classes, thus dramatically reducing the number
of parameters required

o Learning with parametric approaches (in statistics term) is more efficient than
that with non-parametric approaches (e.g., Gaussian and Binomial distributions
versus histogram) in data utilization

o Additional Problem Knowledge (or Domain Knowledge), acquired through
analyzing problem, add extra strength as research goes on (e.g., speech
recognition)
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Why Statistical Parametric Learning (ll1)

= More efficient training process

0 Theoretically, every model (can be converted to a mapping function) is able
to be implemented with a universal approximator; however, learning every
transformation from scratch is inefficient (requires lots of data)

o Some neural-net approaches add a pre-processor to include feature
transformation for promoting data utilization efficiency (e.g., LPC and State-
Segmentation in speech recognition); however, this approach deviates from its
advantage of simplicity

0 Statistical approaches offer relatively fast convergence speed and requires
less processing power

0 More efficient training process ensures fast testing turn around time, and
thus accelerate R&D advancing pace

= Real-time requirement is not a serious constrain now

0 With the Moore’s Law keeps going, it is possible to implement many
applications in software now (e.g., speech recognition)

0 Whether the architecture is more suitable for hardware implementation is
thus less concerned during decision making

1999/12/10 Keh-Yih Su / Jing-Shin Chang, Behavior Design Corporation - Part |

21

Elements of Parameter Learning (1)
» Performance Criteria: error rate (E), precision (P), recall (R), and
F-measure
0 E =number_of_incorrect_identification / total_number_of_instances
0 P =number_of_correct_identification / number_of_candidates_in_list

0 R =number_of_correct_identification / number_of_correct_instances

0 F-measure (=2PxR/(P+R))

» Observations & Features
0 what to use for solving the problem (e.g., ambiguity resolution)
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Elements of Parameter Learning (Il)

m Statistical Language Model: Probabilistic Form & Parameter
Values

0 Probabilistic form characterizes the relationship among features to reflect
problem characteristics and make computation feasible

0 Knowledge is implicitly implied by (or distributed in) those large number of
parameters

m Parameters Estimation & Learning (Adjusting) Process

0 Obtain a specific set of model parameters that can maximize the desired
performance criterion
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Elements of Parameter Learning (lIl)

= Training Corpus: known instances used for learning
0 The information source to learn the desired knowledge

0 The amount of implied Information is related to the Corpus Size and the
Degree of Annotation (if under the supervised learning mode)

= Performance Evaluation

0 Performance is a statistic measure based on a set of finite samples
o Values obtained from different sets of data (e.g., training set and testing set) are
usually different

o Has estimation errors as other statistics do

0 Estimation variance (i.e., estimation accuracy) depends on the size of the
sampling data
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Elements of Parameter Learning (IV)

= Data Set Classification

0 Training Set
o The data set used to obtain model parameters

o Performance measured in the training set reflects the model capability to fit
available training instances

0 Testing Set
o A data set which is independently sampled other than the training set

o Itis mainly used to measure the true system performance in the real world, which
also reflects the model capability to fit other instances in the real world

0 Cross-Validation Set

o Another set of data which is independently sampled other than both the training
set and the testing set

o Itis mainly used to help making design decision (e.g., model complexity adopted,
etc.)
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More on Performance Evaluation

= Why testing set

0 The performance measured in the training set is generally over-optimistic
(which is called over-fitting, or over-tuning, phenomenon). 100% accuracy is
possible if the number of parameter is greater than that is needed

o Over-fitting usually occurs when the number of training data is not enough to
support the model complexity adopted

o Over-tuning happens during the adaptive learning process while we have too
many adjustable parameters that we can afford

0 We need another independent data set to reflect the true performance when
the customer deploys the system in the real world

0 To keep the testing set away from contamination, it is not allowed to see (or
involve) the details in any design/training phase

o You cannot use it to decide the suitable model complexity, dimensionality of the
feature space, or when to stop during the adaptive learning process
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More on Performance Evaluation (cont.)

= Why Cross-Validation Set

0 Bad training set performance normally implies methodological flaw, so we
can immediately know that we must re-do the design

0 In contrary, good training set performance may result from:
o Areally good model (which also get good testing set performance)
o An over-fitted model (which will give bad testing set performance)

o A set of over-tuned parameters resulted from the adaptive learning process
(which gives bad testing set performance too)

0 As the testing set is not allowed to be used to help making design decision,
we cannot disambiguate the above situations

0 We need another independent set of data to provide a simulated testing test
performance to help us making design decision
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Performance Evaluation Methods

= Re-substitution Estimate:

0 Use the same set of samples to design and test a model (training set
performance)

= Holdout Estimate:
0 Use two mutually exclusive sets of samples to design and test a model
0 Less data is left in the training set; thus it would result in a worse system

0 The true testing set performance would be deteriorated, although its value
can be more accurately estimated

= Leave-one-out Estimate:

0 Use one sample for testing and the other samples for design; test the model
in rotation for each single sample, then report the performance by averaging
the obtained result

0 Retain the largest amount of training set data (thus have the best model)
while provide the most accurate testing set performance measure

0 Very time-consuming, as it demands to repeat the design process N times
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Performance Evaluation Methods (cont.)

= Rotation Estimate:

0 Use one subset of the samples for testing and the other subsets for design;
test the model in rotation for each subset

0 Example: 10-fold rotation
o 1. Divide all data (D) into 10 subsets of equal size:D=D,UD, U...UD,,

o 2. For lteration | =1 to 10:
« use D; as testing set, D-D; as training set, and evaluate testing set error rate E;

o 3. Report the estimated error rate as: (E,+E,+...+E ()/10

0 A compromise between achieving better true testing set performance and
obtaining more accurate measure on that
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Modes of Learning

= Supervised Learning
0 Learning from Annotated Examples
0 Example: part-of-speech tagging
1. Collect data: the (det) design (n/v) of (prep) computer (n) ...

2. Human annotation with correct parts-of-speech: the (det) design (n) of (prep)
computer (n) ...

3. Estimate Language Parameters according to annotation: P(n|det)=90/123,
P(adj|det)=33/123, P(prep|n) =63/250, ..., P(n|prep)=61/97, ...

4. Estimate likelihood and Conduct predictions: P(..., det, n, prep, n, ...) = ... 90/123
X 63/250 x 61/97 X ...

0 Just an estimation process (no iteration), if no adaptive learning process is
adopted

0 Advantage: capable to achieve better performance (as more information is
carried by the annotation) given the same amount of training data
0 Disadvantage: human annotation is usually time-consuming and expensive

o Selective Sampling (l.e., select more effective new data for annotation) thus had
been proposed to increase data collection efficiency
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Modes of Learning (cont.)

= Unsupervised Learning
0 Learning with Un-annotated Examples
0 Example: part-of-speech tagging
o do not have human annotation in Step 2

o do not base on human annotation for estimating initial language parameters in
Step 3

0 Advantage: human annotation is not required

0 Disadvantage: performance achieved usually is inferior to that of supervised
learning

= Bootstrapping:

0 Learning with Un-annotated Training Data, however, start from an
Annotated Seed Corpus

0 A compromise between the supervised learning and un-supervised learning
0 Provide most cost effective solution, if used appropriately

1999/12/10 Keh-Yih Su / Jing-Shin Chang, Behavior Design Corporation - Part |

31

Decision factors for choosing appropriate Learning
Mode (1)

= Problem Characteristics

0 Amount and Granularity of Knowledge required
o Think about unsupervised learning when the answer is both “large” and “high”

o Most NLP tasks require huge amount of linguistics knowledge

0 Inherent non-determinism in labeling (difficulty to annotate the corpus)

o Choose un-supervised learning (or re-think the classification hierarchy) if the
answer is “high”

o Examples: part of speech tagging (62% of the words in Brown Corpus have only
one tag) versus sense disambiguation (even experts have difficulty to assign
appropriate tags)
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Decision factors for choosing appropriate Learning
Mode (I1)

= Problem Characteristics (cont.)

0 Inherent Constraints (is the implied dependency strong?)
o Choose un-supervised learning if the answer is “yes”

o For example, bilingual corpus substantially eliminates impossible translations (or
senses)

0 Inherent anchor points
o Choose un-supervised learning if the answer is “abundant”

o For example, un-ambiguous words in POS tagging task reduce possible tags of
other enclosed words

m Resource Scarceness
0 Measured by: corpus size, amount of information required

0 Choose supervised learning if the corpus size is very limited
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Decision factors for choosing appropriate Learning
Mode (Ill)

m Cost for Preparing Learning Samples

0 Cost for Collecting Training Samples:
o Have people do the data entry work (e.g., LEXIS-NEXIS)
o From public resources (LCD, ROCLING)
o From the web/news/bbs with automatic tools

0 Cost for Annotating Training Samples :

o This is usually the bottleneck for supervised learning: requiring number of
qualified persons for annotating the corpus and doing consistency check;
besides, it also requires a long period of time for large scale projects

0 Choose unsupervised learning if you cannot afford the cost required

m Frequency of updating features
0 How often for changing dimensionality, values, or labels of the feature vector

0 Unsupervised-learning is prefer if the frequency is high
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When to Use Unsupervised Learning (1)

= The task on hand requires huge amount of fine grained
knowledge to achieve acceptable performance
0 Usually not affordable by providing supervised learning examples

= Inherent Constraints (or implied dependency) among the
linguistic units are strong

0 Have a better chance to predict the best candidate through good language
model

= Training data have enough explicit Inherent anchor points
0 Help to impose constrains on their neighbors

0 Make the task for resolving ambiguity easier
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When to Use Unsupervised Learning (I1)

=  Good Language Model that can echo the human preference is
available.

0 Have a better chance to learn language parameters that are capable to
achieve satisfied performance

0 This criterion is actually required for both supervised-learning and un-
supervised learning for achieving satisfied performance

= Uncertain in classification hierarchy:

0 re-annotation & re-training are required frequently; however, it is not
affordable

= Uncertain in discriminative features to be adopted:
0 re-annotation & re-training are required frequently; supervision is costly
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When to Use Unsupervised Learning (Il

= Mass amount of un-annotated data is available; however,
annotation is not affordable or very difficult (highly confusing in
assigning labels)

0 Information concentration (advantage own by the supervised-learning) is not
essential

0 Constraints can be imposed to the corpus for helping to select more certain
parts (e.g., selecting the boundary sentences of paragraphs for training the
sentence segmentation model)

0 Implied information might be enough to cover the unobservable knowledge
which would be, otherwise, directly provided in the supervised-learning case
(from less amount of training data)
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When to Use Unsupervised Learning (1V)

m Size of available resource keep increasing with time:

0 system parameters are to be updated frequently for incremental
improvement

= In Summary : when the cost for supervised learning is high and

unsupervised learning can achieve competitive performance,
choose unsupervised learning
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Why unsupervised learning is getting popular in
NLP (1)

= The fact that NLP requires huge and find-grained knowledge is
increasingly perceived.

= In general, better performance requires deeper analyses;
however, the annotating task gets more and more difficult when
the analysis gets deeper

0 The increase of inherent non-determinism make the task of assigning tags
more difficult.

= Multi-lingual corpus is more available

0 Implicit constraints and implied annotations can reduce the degree of
ambiguity
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Why unsupervised learning is getting popular in
NLP (II)

= Many public corpora only provide minimum degree of annotation
(partially anchored); the cost for further annotation is beyond the
reach of most researchers
0 The environment and supports for supervised learning is limited

= The size of on-line corpora increases rapidly in this Internet age
0 The degree of knowledge concentration is no more essential.

m  The cost for possessing an un-annotated corpus diminish to
almost nothing

0 Achieved through resource sharing (ROCLING, LDC etc.) or through
acquiring from WWW; however, annotated corpora are still rare.
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Why unsupervised learning is getting popular in
NLP (1)

» Corpus-Based Statistic-Oriented (CBSO) approaches prevail in
NLP community; however, it is a rapidly changing field
0 New model is tried in a fast pace

0 New features, classes are tested and refined rapidly

0 Very difficult to keep the associated annotation updated accordingly, if the
supervised-learning approach is adopted
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