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Part III: Typical Unsupervised Learning Methods:
EM and Viterbi Algorithms

■ Basic Unsupervised Learning Methods: EM & Viterbi

■ Characteristics of the Unsupervised Methods

■ An Example: Part-of-speech Tagging

■ More Details and Differences Between EM & Viterbi

■ Potential Problems with the Unsupervised Methods
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Basic Unsupervised Learning: EM/Viterbi Algorithm

1.  Develop a Model:

◆ Select Potentially Useful Features

◆ Build a statistical Language Model with those adopted features

2.  Prepare a Training Corpus

3. Set up Initial Conditions:

◆ EM: Guessing Initial Model Parameter (uniformly, or heuristically), and then
calculating the initial expectation

◆ Viterbi: Guessing Initial Labels
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Basic Unsupervised Learning (cont.):

4. Re-Estimate Model Parameters via MLE

◆ EM: Using the expectation (which implies weighting every possibility)

◆ Viterbi: Using the guessed labels (which implies using only one possibility: a
simplified case of EM)

5. Re-Generating Prediction according to new Model Parameters

✦ EM: Re-estimate the Expectation of Sufficient Statistic

✦ Viterbi: Re-Labeling

6. Repeat the Prediction and Estimation Steps until the joint
likelihood value of the training corpus converge

1999/12/10 Keh-Yih Su / Jing-Shin Chang, Behavior Design Corporation - Part III 4

Characteristics of the Unsupervised Learning
Algorithms

■ Joint likelihood values of the training corpus monotonically
increases with iterations

■ Likelihood values will converge to a local/global maximum given
sufficiently large iterations
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Viterbi Training (I):

■ Example Task: Tagging a Corpus w1
n (=w1, w2,…, wn) with the

appropriate tag sequence c1
n (=c1, c2,…, cn)

■ 1. Decide Statistical Language Model:

◆ Bi-gram Language Model:

� arg max , , | , , ,

arg max | , |

c P c c w w

P w c P c

n

c
n n

c

n n n

n

n

1 1 1

1 1 1

1

1

=

= ×

� � Λ

Λ Λ

1 6

2 7 2 7

� arg max | |c P w c P c cn

c
i i

i

n

i i
n

1
1

1
1

≡ ×
=

−∏ 1 6 1 6

1999/12/10 Keh-Yih Su / Jing-Shin Chang, Behavior Design Corporation - Part III 6

Viterbi Training (II):

■ 2. Get Untagged Corpora:

◆ Example:

✦ The current design of …

✦ det   adj/n     v/n      p  …

■ 3. Make Initial Guess (based on initial parameter set Λ 0):

✦ i.e., prior distribution of unigram, P(cki | wi)

✦              The Current Design of  ...

✦ [c1
n] 0 : [det        n         v       p  ...]
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Viterbi Training (III):

■ 4. Maximum Likelihood Estimation

■ 5. Re-tagging: Select the path with maximum probability
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Viterbi Training (IV):

■ 6. Re-estimation: Estimate parameters that maximize the likelihood
value

■ 7. Repeat: Λ1 => Λ2 => Λ3 => => Λ* (optimal parameters)

■ Likelihood Value is Monotonically Increasing
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EM Training (I)

■ Example Task: Tagging a Corpus w1
n (=w1, w2,…, wn) with the

appropriate tag sequence c1
n (=c1, c2,…, cn)

1: Set up Language Model, which is the same as that in the Viterbi
Training

◆ Bi-gram Language Model:

2: Prepare Training Corpus, which is the same as that in the Viterbi
Training
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EM Training (II)

3: Guessing Initial Model Parameter (uniformly, or heuristically),
and then calculating the initial expectation of the sufficient
statistics ([ Nc(i), Nc(i), c(j), Nw(k)]; for every possible combination)

◆ E[Nc(i)] : Expected Number of transitions from a specific POS c(i) (position
independent: the position index is ignored)

◆ E[Nc(i), c(j)]: Expected Number of transitions from a specific POS c(i) to
another POS c(j)   (ignoring the position indexes)
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EM Training (III)

3: Calculate the expectation of the sufficient statistics (cont.)

◆ E[Nw(k)]: Expected Number of word w(k) appears in the corpus (position
independent: the position index is ignored)

4: Using the expectation to do Maximum Likelihood Estimation
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EM Training (IV)

5: Re-calculate the expectation of the sufficient statistics

◆ Repeat the calculations as in Step (3).

6: Re-estimate the parameters

◆ Repeat the calculations as in Step (4).

7: Repeat the above procedures.

■ Likelihood Value Monotonically Increases
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EM versus Viterbi (I)

■ EM is a kind of soft-labeling (that is, an observation can belong
to several different classes simultaneously with various
associated probabilities).

◆ Example: every possible tag are assign to a given word-position (I.e., every
possible tag sequence are associated with the given word sequence) .

■ Viterbi is a kind of hard-labeling (that is, an observation can only
belong to one class).

◆ Example: only one tag can be assigned to a given word-position (I.e., only
one tag sequence is associated with the given word sequence).
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EM versus Viterbi (II)

■ Soft-labeling versus Hard-labeling (cont.)

◆ Comparison:

✦ Hard-Labeling is a special case of the Soft-Labeling

✦ Soft-Labeling carries more information than the Hard-Labeling does, given the
same amount of training data (i.e., more efficient).

✦ The advantage diminishes when the corpus size goes larger

✦ Soft-Labeling annotation is very difficult to be performed by human
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EM versus Viterbi (III)

■ Optimization Criteria are Different

◆ EM: optimize

◆ Viterbi: optimize

◆ In general, they would converge to different parameter points (I.e., obtain
different parameter sets)
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EM versus Viterbi (IV)

■ Characteristics Comparison:

◆ EM can deliver better performance, but requires heavier computation

◆ Viterbi is simple and quick, but with inferior performance

◆ The performance difference is usually small and tolerable for most NLP and
Speech Recognition tasks conducted in the community

✦ In many cases, the parameters will be adjusted again by using an adaptive
learning algorithm any way

✦ Initial difference will not make effect after adaptive learning
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More on EM Training [Dempster 77]

■ EM (Expectation and Maximization) algorithm: an unsupervised
training process which consists of an expectation step followed
by a maximization step.

■ There is a many-to-one mapping xxy from X to Y.

◆ x: is the complete data with density x ~ f(x |Φ )  depending on the
parameter set Φ .

◆ y: the incomplete data with the sampling density g(y |Φ )

g y f x d x
X y
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1 6

= I
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More on EM Training (cont.)

■ The EM training procedure in the p-th iteration:

◆ E-step: Estimate the complete-data sufficient statistics t(x)  by finding

◆ M-step: Determine Φ  (p+1) which maximizes.

t E t X yp p( ) ( )( ) ,= Φ

f t p p( ) ( )Φ + 14 9
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Example Task:

■ The observed (incomplete) data y: 197 animals which are
distributed multinomially into 4 categories.

◆ y=(y1, y2, y3, y4)=(125,18,20,34).

◆ cell probabilities: (1/2+1/4S, 1/4(1- S), 1/4(1- S), 1/4S)

■ The complete data (multinomially distributed):

◆ x=(x1, x2, x3, x4, x5).

◆ cell probabilities: (1/2, 1/4S, 1/4(1- S), 1/4(1- S), 1/4S) [with one parameter S]
◆ y1 = x1+x2, e.g., (125, 0), or (124,1), or …
◆ x3 = y2 , x4 = y3, x5 = y4 .
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E-Step:

■ To find S(p+1) from S(p) (S(p) denotes the value of S after p
iterations):

■ E-Step: x E X X X
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M-Step:

■ M-Step:

◆ x1
p and x2

p are usually not integers.

◆ The re-estimation process converge to S* when p>5, where S* �
0.6268214980 is the MLE of S.

Let
f x x x

x x x x

x

x
p

p

p

∂
∂

= ⇒ = +
+ + +

= +
+ + +

+

|

( )
( )

( )

π
π

π

π

1 6
0

34

18 20 34

2 5

2 3 4 5

1 2

2

1999/12/10 Keh-Yih Su / Jing-Shin Chang, Behavior Design Corporation - Part III 22

Common Problems with Unsupervised Learning (I)

■ Ad Hoc Features Selection:
◆ Feature Space determines the Upper Bound of performance
◆ Over simplified bigram, trigram models may fail to gain success on

complicated NLP tasks
◆ Class-based features not used, resulting in a large number of parameters

(that is, no refined model; e.g., words vs. tags or chunks)

■ Feature Dependency Overlooked: Model Deficiency
◆ Inappropriate independence assumptions, inappropriate dependency

relationship assumed (to be described in the afternoon session)

■ Over Fitting of Model:
◆ Using high Model Complexity with Small Training Corpus

■ Un-hinted Initial Guess:
◆ Trapped in undesired Local Maximum
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Common Problems with Unsupervised Learning (II)

■ Unseen and Untrained Events not Well Estimated
◆ Give poor performance when the case involves the unseen event

■ Mismatch between ML Estimation & Human Preference not
Compensated

◆ Maximizing training set likelihood does not implies good testing set
performance

■ System Sensitivity (versus statistical characteristics variation)
not considered

◆ System Sensitivity : the degree of variation of system performance that will
be caused by the variation of the statistical characteristics between the
training set and the testing set

◆ Statistical characteristics variation: variation  between inherited statistical
characteristics (implied by the  parameters) of the training set and the testing
set


